• Title/Summary/Keyword: water-splitting

Search Result 352, Processing Time 0.028 seconds

A GENERALIZATION OF LOCAL SYMMETRIC AND SKEW-SYMMETRIC SPLITTING ITERATION METHODS FOR GENERALIZED SADDLE POINT PROBLEMS

  • Li, Jian-Lei;Luo, Dang;Zhang, Zhi-Jiang
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1167-1178
    • /
    • 2011
  • In this paper, we further investigate the local Hermitian and skew-Hermitian splitting (LHSS) iteration method and the modified LHSS (MLHSS) iteration method for solving generalized nonsymmetric saddle point problems with nonzero (2,2) blocks. When A is non-symmetric positive definite, the convergence conditions are obtained, which generalize some results of Jiang and Cao [M.-Q. Jiang and Y. Cao, On local Hermitian and Skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 2009(231): 973-982] for the generalized saddle point problems to generalized nonsymmetric saddle point problems with nonzero (2,2) blocks. Numerical experiments show the effectiveness of the iterative methods.

Controlling Water Splitting Characteristics of Anion-Exchange Membranes by Coating Imidazolium Polymer (이미다졸륨 고분자 코팅을 통한 음이온교환막의 물분해 특성 제어)

  • Kim, Do-Hyeong;Park, Jin-Soo;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • In this study, novel pore-filled anion-exchange membranes (PFAEMs) with low electrical resistance, high permselectivity, and low water-splitting flux property under a concentration polarization condition have been developed for the enhancement in the efficiency of electrochemical water treatment processes. The base membranes have been prepared by filling a copolymer containing quaternary ammonium groups with an excellent ion-exchange capability into a porous polyolefin substrate, showing a high performance superior to that of a commercial membrane. In addition, it was confirmed that the electrochemical membrane performances are preserved while the water-splitting flux is effectively controlled by coating an imidazolium polymer onto the surface of the base membrane. The prepared PFAEMs revealed remarkably low electrical resistances of about 1/6~1/8 compared to those of a commercial membrane, and simultaneously low water-splitting flux comparable with that of cation-exchange membranes under a concentration polarization condition.

End Use Tactile Property of the Split-type Nylon/PET Microfiber Fabrics (마찰과 세탁에 의한 극세섬유 직물의 표면과 촉감변화에 관한 연구)

  • 오경화;윤재희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.3_4
    • /
    • pp.539-545
    • /
    • 2004
  • In this study, the effect of washing, bleaching, and abrasion on tactile and the water absorption properties of the split-type Nylon/Polyester (N/P) microfiber pile-knit was investigated under various enduse conditions. We examined the water absorption and surface properties of PET microfiber which will be very useful in the future. We also studied the variations of their performance during usage caused by friction and repeated washing, regard to all kinds of physical, chemical changes which will appear while using those textiles. Progress in further splitting of PET microfiber fabric is observed with increases in the number of washing and bleaching cycles, and treatment temperature. Initial water absorption (%) was increased with progress in splitting, which provided efficient capillary channel. Surface properties were varied with additional splitting by washing and abrasion. Formation of pilling and splitting by abrasion increase surface roughness, diminishing tactile property, and reduced water absorption property. The current results from this study is expected to provide the appropriate washing management guide to consumers, and to inform end-use performance of product to a producer for improving product quality.

2-Step Thermochemical Water Splitting on a Active Material Washcoated Monolith Using a Solar Simulator as Heat Source (인공태양을 이용한 모노리스 적용 반응기에서 2단계 열화학적 물분해 연구)

  • Kang, Kyoung-Soo;Kim, Chang-Hee;Park, Chu-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2007
  • Solar energy conversion to hydrogen was carried out via a two-step thermochemical water splitting using metal oxide redox pair. To simulate the solar radiation, a 7 kW short arc Xe-lamp was used. Partially reduced iron oxide and cerium oxide have the water splitting ability, respectively. So, $Fe_3O_4$ supported on $CeO_2$ was selected as the active material. $Fe_3O_4/CeO_2$(20 wt/80 wt%) was prepared by impregnation method, then the active material was washcoated on the ceramic honeycomb monolith made of mullite and cordierite. Oxygen was released at the reduction step($1673{\sim}1823\;K$) and hydrogen was produced from water at lower temperature($873{\sim}1273\;K$). The result demonstrate the possibility of the 2-step thermochemical water splitting hydrogen production by the active material washcoated monolith. And hydrogen and oxygen was produced separately without any separation process in a monolith installed reactor. But the SEM and EDX analysis results revealed that the support used in this experiment is not suitable due to the thermal instability and coating material migration.

The Properties of the Several Metal Oxides in the Water-splitting for H2 Production (물 분해 수소제조를 위한 금속산화물들의 반응특성)

  • Son, Hyun-Myung;Park, Chu-Sik;Lee, Sang-Ho;Hwang, Gab-Jin;Kim, Jong-Won;Lee, Jin-Bae
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.268-275
    • /
    • 2003
  • The water-splitting process by the metal oxides using solar heat is one of the hydrogen production method. The hydrogen production process using the metal oxides (NiFe2O4/NiAl2O4,CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite) was carried out by two steps. The first step was carried out by the CH4-reduction to increase activation of metal oxides at operation temperature. And then, it was carried out the water-splitting reaction using the water at operation temperature for the second step. Hydrogen was produced in this step. The production rates of H2 were 110, 160, 72, 29, 17, $21m{\ell}/hr{\cdot}g-_{Metal\;Oxide}$ for NiFe2O4/NiAl2O4, CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite respectively in the second step. CoFe2O4/CoAl2O4 had higher H2 production rate than the other metal oxides.

Effects of Immobilized Bipolar Interface Formed by Multivalent and Large Molecular Ions on Electrodialytic Water Splitting at Cation-Exchange Membrane Surface (양이온교환막 표면의 전기투석 물분해에서 다가의 큰 이온성분자에 의해 형성된 고정층 바이폴라 계면의 영향)

  • Seung-Hyeon Moon;Moon-Sung Kang;Yong-Jin Choi
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.143-153
    • /
    • 2003
  • The effects of bipolar interface formed on the surface of cation-exchange membrane on water splitting phenomena were investigated. Results showed that the formation of immobilized bipolar interface resulted in significant water splitting during electrodialysis. In particular, the immobilized bipolar interface was easily created on the cation-exchange membrane surface in the electrodialytic systems where multivalent cations served as an electrolyte. Multivalent cations with low solubility product resulted in violent water splitting because they were easily precipitated on the membrane surface in hydroxide form. Therefore, the bipolar interface consisting of H- and OH-affinity groups were formed on the membrane-solution interface. Apparently, water splitting was largely activated with the help of strong electric fields generated between the metal hydroxide layer and fixed charge groups on the membrane surface. Likewise, the accumulation of large molecular counter ions on the membrane surface led to the formation of a fixed bipolar structure that could cause significant water splitting in the over-limiting current region. Therefore, the prevention of the immobilization of bipolar interface on the membrane surface is very essential in improving the process efficiency in a high-current operation.

Photocatalysts for Hydrogen Production from Solar Water Splitting (태양광을 활용한 물분해 수소생산용 광촉매재료)

  • Kim, Jung Hyeun
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.191-200
    • /
    • 2013
  • Researches on developing photocatalyst materials for hydrogen production from solar water splitting attract great attentions due to the unlimited and clean characteristics of the solar energy. In this review, photocatalysts used for hydrogen production from the solar water splitting are discussed in terms of material characteristics. In addition, various modification techniques applied to the photocatalysts for improving hydrogen production efficiency are summarized. Finally, light characteristics such as intensity, illumination density and wavelength cutoff are also discussed for the importance of hydrogen production rate.

Water-splitting Performance of TiO2 Nanotube Arrays Annealed in NH3 Ambient

  • Kim, Se-Im;Kim, Sung-Jin;Yang, Bee-Lyong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.200-204
    • /
    • 2011
  • Increase of surface area and decrease of band gap in $TiO_2$ semiconductors are significant to improve the efficiency of water splitting by photoelectrolysis. In this study $TiO_2$ nanotube arrays with ~7 um length and ~100 nm diameter were fabricated by an anodizing technique of titanium foils using DMSO (dimethyl sulfoxide)-based electrolytes. Then to control the band gap of the $TiO_2$ arrays, they were annealed at $550^{\circ}C$ for up to 180 min in $NH_3$ gas ambient. The samples annealed in $NH_3$ gas for 30 min and 60 min showed superior photo-conversion efficiency for water splitting under white and visible light. A $TiO_2$ nanotube annealed in $NH_3$ gas ambient for a period longer than 120 min showed 1 order higher leakage current. It is believed that the decrease of band gap and increase of conductivity in $TiO_2$ nanotube arrays due to $NH_3$ gas treatments result in the superior water-splitting performance.

A Newly Designed a TiO2-Loaded Spherical ZnS Nano/Micro-Composites for High Hydrogen Production from Methanol/Water Solution Photo-Splitting

  • Kim, Ji-Eun;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2133-2139
    • /
    • 2012
  • A new system using $TiO_2$ (nano-sized, band-gap 3.14 eV)-impregnated spherical ZnS (micro-sized, band-gap 2.73 eV) nano/micro-composites (Ti 0.001, 0.005, 0.01, and 0.05 mol %/ZnS) was developed to enhance the production of hydrogen from methanol/water splitting. The ZnS particles in a spherical morphology with a diameter of about 2-4 mm which can absorb around 455 nm were prepared by hydrothermal method. This material was used as a photocatalyst with loading by nano-sized $TiO_2$ (20-30 nm) for hydrogen production. The evolution of $H_2$ from methanol/water (1:1) photo splitting over the $TiO_2$/ZnS composite in the liquid system was enhanced, compared with that over pure $TiO_2$ and ZnS. In particular, 1.2 mmol of $H_2$ gas was produced after 12 h when 0.005 mol % $TiO_2$/ZnS nano/micro-composite was used. On the basis of cyclic voltammeter (CV) and UV-visible spectrums results, the high photoactivity was attributed to the larger band gap and the lower LUMO in the $TiO_2$/ZnS composite, due to the decreased recombination between the excited electrons and holes.

Comparative Study of Undoped and Nickel-Doped Molybdenum Oxide Photoanodes for PEC Water Splitting

  • Garcia-Garcia, Matias
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.377-389
    • /
    • 2022
  • The current global energy supply depends heavily on fossil fuels. This makes technology such as direct water splitting from harvesting solar energy in photoelectrochemical (PEC) systems potentially attractive due to its a promising route for environmentally benign hydrogen production. In this study, undoped and nickel-doped molybdenum oxide photoanodes (called photoanodes S1 and S2 respectively) were synthesized through electrodeposition by applying -1.377 V vs Ag/AgCl (3 M KCl) for 3 hours on an FTO-coated glass substrate immersed in molibdatecitrate aqueous solutions at pH 9. Scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were used for microstructural and compositional characterizations of the photoanodes. In addition, the optical and photoelectrochemical characterizations of these photoanodes were performed by UV-Visible spectroscopy, and linear scanning voltammetry (LSV) respectively. The results showed that all the photoanodes produced exhibit conductivity and catalytic properties that make them attractive for water splitting application in a photoelectrochemical cell. In this context, the photoanode S2 exhibited better photocatalytic activity than the photoanode S1. In addition, photoanode S2 had the lowest optical band-gap energy value (2.58 eV), which would allow better utilization of the solar spectrum.