Browse > Article
http://dx.doi.org/10.7464/ksct.2013.19.3.191

Photocatalysts for Hydrogen Production from Solar Water Splitting  

Kim, Jung Hyeun (Department of Chemical Engineering, University of Seoul)
Publication Information
Clean Technology / v.19, no.3, 2013 , pp. 191-200 More about this Journal
Abstract
Researches on developing photocatalyst materials for hydrogen production from solar water splitting attract great attentions due to the unlimited and clean characteristics of the solar energy. In this review, photocatalysts used for hydrogen production from the solar water splitting are discussed in terms of material characteristics. In addition, various modification techniques applied to the photocatalysts for improving hydrogen production efficiency are summarized. Finally, light characteristics such as intensity, illumination density and wavelength cutoff are also discussed for the importance of hydrogen production rate.
Keywords
Photocatalyst; Solar water splitting; Semiconductor; Band gap; Hydrogen production;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fan, W., Lai, Q., Zhang, Q., and Wang, Y., "Nanocomposites of $TiO_2$ and Reduced Graphene Oxide as Efficient Photocatalysts for Hydrogen Evolution," J. Phys. Chem. C, 115, 10694-10701 (2011).   DOI   ScienceOn
2 Lightcap, I. V., Kosel, T. H., and Kamat, P. V., "Anchoring Semiconductor and Metal Nanoparticles on a Two-dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide," Nano Lett., 10, 577-583 (2010).   DOI   ScienceOn
3 Janaky, C., Rajeshwar, K., de Tacconi, N. R., Chanmanee, W., and Huda, M. N., "Tundsten-based Oxide Semiconductors for Solar Hydrogen Generation," Catal. Today, 199, 53-64 (2013).   DOI   ScienceOn
4 Fujishima, A., and Honda, K., "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238, 37-38 (1972).   DOI   ScienceOn
5 Zaleska, A., "Doped-$TiO_2$: A Review," Recent Patents Eng., 2, 157-164 (2008).   DOI   ScienceOn
6 Fuerte, M. D. H. A., Maira, A. J., Martinez-Arias, A., Fernandez-Garcia, M., Conesa, J. C., and Soria, J., "Visible Light-activated Nanosized Doped-$TiO_2$ Photocatalysts," Chem. Commun., 24, 2718-2719 (2001).
7 Anpo, M., "Use of Visible Light. Second-generation Titanium Dioxide Photocatalysts Prepared by the Application of an Advanced Metal Ion-implantation Method," Pure Appl. Chem., 72, 1787-1792 (2000).   DOI   ScienceOn
8 Ohno, T., Mitsui, T., and Matsumura, M., "Photocatalytic Activity of S-doped $TiO_2$ Photocatalyst under Visible Light," Chem. Lett., 32, 364-365 (2003).   DOI   ScienceOn
9 Liu, Y., Chen, X., Li, J., and Burda, C., "Photocatalytic Degradation of Azo Dyes by Nitrogen-doped $TiO_2$ Nanocatalysts," Chemosphere, 61, 11-18 (2005).   DOI   ScienceOn
10 Yu, J. C., Zhang, L., Zheng, Z., and Zhao, J., "Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity," Chem. Mater., 15, 2280-2286 (2003).   DOI   ScienceOn
11 Hirai, T., Suzuki, K., and Komasawa, I., "Preparation and Photocatalytic Properties of Composite CdS Nanoparticles-Titanium Dioxide Particles," J. Colloid Inteface Sci., 244, 262-265 (2001).   DOI   ScienceOn
12 Chatterjee, D., and Mahata, A., "Demineralization of Organic Pollutants on the Dye Modified $TiO_2$ Semiconductor Particulate System using Visible Light," Appl. Catal. B Environ., 33, 119-125 (2001).   DOI   ScienceOn
13 Zhou, W., Zheng, Y., and Wu, G., "Novel Luminescent RE/$TiO_2$ (RE = Eu, Gd) Catalysts Prepared by In-situ Sol-gel Approach Construction of Multi-functional Precursors and Their Photo or Photocatalytic Oxidation Properties," Appl. Surf. Sci., 252, 1387-1392 (2006).
14 Yu, J., Zhang, J., and Jaroniec, M., "Preparation and Enhanced Visible-light Photocatalytic H2-production Activity of CdS Quantum Dots-sensitized $Zn_{1-x}Cd_xS$ Solid Solution," Green Chem., 12, 1611-1614 (2010).   DOI   ScienceOn
15 Winter, C. -J., "Hydrogen Energy-abundant, Efficient, Clean: A Debate over the Energy-system-of-change," Int. J. Hydrogen Energy, 34, S1-S52 (2009).   DOI   ScienceOn
16 Zhang, W., Zhong, Z., Wang, Y., and Xu, R., "Doped Solid Solution: $(Zn_{0.95}Cu_{0.05})_{1-x}Cd_xS$ Nanocrystals with High Activity for $H_2$ Evolution from Aqueous Solutions under Visible Light," J. Phys. Chem. C, 112, 17635-17642 (2008).   DOI   ScienceOn
17 Arai, T., Senda, S.-I., Sato, Y., Takahashi, H., Shinoda, K., Jeyadevan, B., and Tohji, K., "Cu-Doped ZnS Hollow Particle with High Activity for Hydrogen Generation from Alkaline Sulfide Solution under Visible Light," Chem. Mater., 20, 1997-2000 (2008).   DOI   ScienceOn
18 Shen, S., Zhao, L., Zhou, Z., and Guo, L., "Enhanced Photocatalytic Hydrogen Evolution over Cu-Doped $ZnIn_2S_4$ under Visible Light Irradiation," J. Phys. Chem. C, 112, 16148-16155 (2008).   DOI   ScienceOn
19 Liu, G., Zhao, L., Ma, L., and Guo, L., "Photocatalytic $H_2$ Evolution under Visible Light Irradiation on a Novel $Cd_xCu_yZn_{1-x-y}S$ Catalyst," Catal. Commun., 9, 126-130 (2008).   DOI   ScienceOn
20 Zhang, W., and Xu, R., "Surface Engineered Active Photocatalysts without Noble Metals: $CuS-Zn_xCd_{1-x}S$ Nanospheres by One-step Synthesis," Int. J. Hydrogen Energy, 34, 8495-8503 (2009).   DOI   ScienceOn
21 Zhang, J., Jiaguo, Y., Zhang, Y., Li, Q., and Gong, J. R., "Visible Light Photocatalytic H2-production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer," Nano Lett., 11, 4774-4779 (2011).   DOI   ScienceOn
22 Thimsen, E., Le Formal, F., Gratzel, M., and Warren, S. C., "Influence of Plasmonic Au Nanoparticles on the Photoactivity of $Fe_2O_3$ Electrodes for Water Splitting," Nano Lett., 11, 35-43 (2010).
23 Zhang, Y., Mori, T., Niu, L., and Ye, J., "Non-covalent Doping of Graphitic Carbon Nitride Polymer with Graphene: Controlled Electronic Structure and Enhanced Optoelectronic Conversion," Energy Environ. Sci., 4, 4517-4521 (2011).   DOI   ScienceOn
24 Xiang, Q., Yu, J., and Jaroniec, M., "Preparation and Enhanced Visible-light Photocatalytic $H_2$-Production Activity of Graphene/$C_3N_4$ Composites," J. Phys. Chem. C, 115, 7355-7363 (2011).   DOI   ScienceOn
25 Kailasam, K., Epping, J. D., Thomas, A., Losse, S., and Junge, H., "Mesoporous Carbon Nitride-silica Composites by a Combined Sol-gel/Thermal Condensation Approach and Their Application as Photocatalysts," Energy Environ. Sci., 4, 4668-4674 (2011).   DOI   ScienceOn
26 Kudo, A., and Sekizawa, M, "Photocatalytic $H_2$ Evolution under Visible Light Irradiation on $Zn_{1-x}Cu_xS$ Solid Solution," Catal. Lett., 58, 241-243 (1999).   DOI
27 Zhang, J., Grzelczak, M., Hou, Y., Maeda, K., Domen, K., Fu, X., Antonietti, M., and Wang, X., "Photocatalytic Oxidation of Water by Polymeric Carbon Nitride Nanohybrids Made of Sustainable Elements," Chem. Sci., 3, 443-446 (2012).   DOI
28 Hu, J. S., Ren, L. L., Guo, Y. G., Liang, H. P., Cao, A. M., Wan, L. J., and Bai, C. L., "Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles," Angew. Chem. Int. Ed., 44, 1269-1273 (2005).   DOI   ScienceOn
29 Reber, J. F., and Meier, K. J., "Photochemical Production of Hydrogen with Zinc Sulfide Suspensions," J. Phys. Chem., 88, 5903-5913 (1984).   DOI
30 Xing, C., Zhang, Y., Yan, W., and Guo, L., "Band Structure-controlled Solid Solution of $Cd_{1-x}Zn_xS$ Photocatalyst for Hydrogen Production by Water Splitting," Int. J. Hydrogen Energy, 31, 2018-2024 (2006).   DOI   ScienceOn
31 Zhang, K., Jing, D, Xing, C., and Guo, L., "Significantly Improved Photocatalytic Hydrogen Production Activity over Cd1-xZnxS Photocatalysts Prepared by a Novel Thermal Sulfuration Method," Int. J. Hydrogen Energy, 32, 4685-4691 (2007).   DOI   ScienceOn
32 Abe, R., Takata, T., Sugihara, H., and Domen, K., "Photocatalytic Overall Water Splitting under Visible Light by TaON and $WO_3$ with an $IO^{3-}/I^-$ Shuttle Redox Mediator," Chem. Commun., 30, 3829-3831 (2005).
33 Djellal, L., Bellal, B., and Trari, M., "Hydrogen Production over $CuIn_3Se_5/WO_3$ Hetero-junction," Energy Procedia, 6, 46-54 (2011).   DOI   ScienceOn
34 Xu, J., Luan, C.-Y., Tang, Y.-B., Chen, X., Zapien, J. A., Zhang, W.-J., Kwong, H.-L., Meng, X.-M., Lee, S.-T., and Lee, C.-S., "Low-temperature Synthesis of $CuInSe_2$ Nanotube Array on Conducting Glass Substrates for Solar Cell Application," ACS Nano, 4, 6064-6070 (2010).   DOI   ScienceOn
35 Leisch, J. E., Bhattacharya, R. N., Teeter, G., and Turner, J. A., "Growth, Characterization and Studying of Sol-gel Derived CdS Nanoscrystalline Thin Films Incorporated in Polyethyleneglycol: Effects of Post-heat Treatment," Sol. Energy Mater. Sol. Cells, 81, 249-262 (2004).   DOI   ScienceOn
36 Panthani, M. G., Akhavan, V., Goodfellow, B., Schmidtke, J. P., Dunn, L., Dodabalapur, A., Barbara, P. F., and Korgel, B. A., "Synthesis of $CuInS_2,\;CuInSe_2,\;and\;Cu(In_xGa_{1-x})Se_2$ (CIGS) Nanocrystal "Inks" for Printable Photovoltaics," J. Am. Chem. Soc., 130, 16770-16777 (2008).   DOI   ScienceOn
37 Wark, S. E., Hsia, C.-H., Luo, Z., and Son, D. H., "Surfactant Effect on the Formation of $CuInSe_2$ Nanowires in Solution Phase Synthesis," J. Mater. Chem., 21, 11618-11625 (2011).   DOI   ScienceOn
38 Paracchino, A., Laporte, V., Sivula, K., Gratzel, M., and Thimsen, E., "Highly Active Oxide Photocathode for Photoelectrochemical Water Reduction," Nat. Mater., 10, 456-461 (2011).   DOI   ScienceOn
39 Chen, L., Shet, S., Tang, H., Wang, H., Deutsch, T., Yan, Y., Turner, J., and Al-Jassim, M., "Electrochemical Deposition of Copper Oxide Nanowires for Photoelectrochemical Applications," J. Mater. Chem., 20, 6962-6967 (2010).   DOI   ScienceOn
40 Takanabe, K, Kamata, K., Wang, X., Antonietti, M., Kubota, J., and Domen, K., "Photocatalytic Hydrogen Evolution on Dye-sensitized Mesoporous Carbon Nitride Photocatalyst with Magnesium Phthalocyanine," Phys. Chem. Chem. Phys., 12, 13020-13025 (2010).   DOI   ScienceOn
41 Bard, A. J., "Photoelectrochemistry and Heterogeneous Photocatalysis at Semiconductors," J. Photochem., 10, 59-75 (1979).   DOI   ScienceOn
42 Sasaki, Y., Iwase, A., Kato, H., and Kudo, A., "The Effect of Co-catalyst for Z-scheme Photocatalysis Systems with an $Fe^{3+}/Fe^{2+}$ Electron Mediator on Overall Water Splitting under Visible Light Irradiation," J. Catal., 259, 133-137 (2008).   DOI   ScienceOn
43 Kudo, A., and Kato, H., "Photocatalytic Activities of $Na_2W_4O_{13}$ with Layered Structure," Chem. Lett., 26, 421-422 (1997).   DOI
44 Kudo, A., and Hijii, S., "$H_2\;or\;O_2$ Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of $Bi^{3+}\;with\;6s^2$ Configuration and $d^0$ Transition Metal Ions," Chem. Lett., 26, 1103-1104 (1999).
45 Kato, H., Matsudo, N., and Kudo, A., "Photophysical and Photocatalytic Properties of Molybdates and Tungstates with a Scheelite Structure," Chem. Lett., 33, 1216-1217 (2004).   DOI   ScienceOn
46 Lo, C.-C., Huang, C.-W., Liao, C.-H., and Wu, J. C. S., "Novel Twin Reactor for Separate Evolution of Hydrogen and Oxygen in Photocatalytic Water Splitting," Inter. J. Hydrogen Energy, 35, 1523-1529 (2010).   DOI   ScienceOn
47 Bae, S. W., Ji, S. M., Hong, S. J., Jang, J. S., and Lee, J. S., "Photocatalytic Overall Water Splitting with Dual-bed System under Visible Light Irradiation," Inter. J. Hydrogen Energy, 34, 3243-3249 (2009).   DOI   ScienceOn
48 Sasaki, Y., Nemoto, H., Saito, K., and Kudo, A., "Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator," J. Phys. Chem. C, 113, 17536-17542 (2009).   DOI
49 Higashi, M., Abe, R., Ishikawa, A., Takata, T., Ohtani, B., and Domen, K., "Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (${\lambda}$ < 500 nm)," Chem. Lett., 37, 138-139 (2008).   DOI   ScienceOn
50 Lettmann, C., Hildebrand, K., Kisch, H., Macyk, W., and Maier, W., "Visible Light Photodegradation of 4-chlorophenol with a Coke-containing Titanium Dioxide Photocatalyst," App. Catal. B, 32, 215-227 (2001).   DOI   ScienceOn
51 Takeshita, K., Yamakata, A., Ishibashi, T., Onishu, H., Nishijima, K., and Ohno, T., "Transient IR Absorption Study of Charge Carriers Photogenerated in Sulfur-doped $TiO_2$," J. Photochem. Photobiol., 177, 269-275 (2006).   DOI   ScienceOn
52 Anpo, M., "Use of Visible Light. Second-generation Titanium Oxide Photocatalysts Prepared by the Application of an Advanced Metal Ion-implantation Method," Pure Appl. Chem., 72, 1787-1792 (2000).   DOI   ScienceOn
53 Yu, J., Zhou, M., Cheng, B., and Zhao, X, "Preparation, Characterization and Photocatalytic Activity of in situ N, S-codoped $TiO_2$ Powders," J. Mol. Catal. A, 246, 176-184 (2006).   DOI   ScienceOn
54 Sakthivel, S., Janczarea, M., and Kisch, H., "Visible Light Activity and Photoelectrochemical Properties of Nitrogen-doped $TiO_2$," J. Phys. Chem. B, 108, 19384-19387 (2004).   DOI   ScienceOn
55 Pore, V., Heikkila, M., Ritala, M., Leskela, M., and Areva, S., "Atomic Layer Deposition of $TiO_2-N_x$ Thin Films for Photocatalytic Application," J. Photobiol. Photochem. A Chem., 177, 68-75 (2006).   DOI   ScienceOn
56 Wu, Z., Dong, F, Zhao, W., and Guo, S, "Visible Light Induced Electron Transfer Process over Nitrogen doped $TiO_2$ Nanocrystals Prepared by Oxidation of Titanium Nitride," J. Hazard. Mater., 157, 57-63 (2008).   DOI   ScienceOn
57 Irie, H., Watanabe, Y., and Hashimoto, K., "Carbon-doped Anatase $TiO_2$ Powders as a Visible-light Sensitive Photocatalyst," Chem. Lett., 32, 772-773 (2003).   DOI   ScienceOn
58 Zoua, J.-J., , He, H., Cui, L., and Du, H.-Y., "Highly Efficient $Pt/TiO_2$ Photocatalyst for Hydrogen Generation Prepared by a Cold Plasma Method," Int. J. Hydrogen Energy, 32, 1762-1770 (2007).   DOI   ScienceOn
59 Chen, H., Bai, S., Chang, C., and Chang, W. D., "Preparation of N-doped $TiO_2$ Photocatalyst by Atmospheric Pressure Plasma Process for VOCs Decomposition under UV and Visible Light Sources," J. Nanoparticle Res., 9, 365-375 (2007).   DOI   ScienceOn
60 Li, X. Z., and Li, F. B., "The Enhancement of Photodegradation Efficiency Using Pt-$TiO_2$ Catalyst," Chemosphere, 48, 1103-1111 (2002).   DOI   ScienceOn
61 Li, X. Z., and Li, F. B., "Study of $Au/Au^{3+}-TiO_2$ Photocatalysts towards Visible Photooxidation for Water and Wastewater Treatment," Environ. Sci. Technol., 35, 2381-2387 (2001).   DOI   ScienceOn
62 Carneiro, J. O., Teixeira, V., Portinha, A., Dupak, L., Magalhaes, A., and Coutinho, "Study of the Deposition Parameters and Fe-dophant Effect in the Photocatalytic Activity of $TiO_2$ Films Prepared by dc Reactive Magnetron Sputtering," Vacuum, 78, 37-46 (2005).   DOI   ScienceOn
63 Zhu, J., Zheng, W., He, B., Zhang, J., and Anpo, M., "Characterization of Fe-$TiO_2$ Photocatalysts Synthesized by Hydrothermal Method and Their Photocatalytic Reactivity for Degradation of XRG Dye Diluted in Water," J. Mol. Catal. A, 216, 35-43 (2004).   DOI   ScienceOn
64 Lee, M. S., Hong, S. S., and Mohseni, M., "Synthesis of Photocatalytic Nanosized $TiO_2$-Ag Particles with Sol-gel Method using Reduction Agent," J. Molec. Catal. A, 242, 135-140 (2005).   DOI   ScienceOn
65 Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., "Visible-light Photocatalysis in Nitrogen-doped Titanium Dioxide," Science, 293, 269-271 (2001).   DOI   ScienceOn
66 In, S.-I., Nielsen, M. G., Vesborg, P. C. K., Hou, Y., Abrams, B. L., Henriksen, T. R., Hansen, O., and Chorkendorff, I., "Photocatalytic Methane Decomposition over Vertically Aligned Transparent $TiO_2$ Nanotube Arrays," Chem. Commun., 47, 2613-2615 (2011).   DOI   ScienceOn
67 Wu, Z., Dong, F., Zhao, W., and Guo, S., "Visible Light Induced Electron Transfer Process over Nitrogen Doped $TiO_2$ Nanocrystals Prepared by Oxidation of Titanium Nitride," J. Hazard. Mater., 157, 57-63 (2008).   DOI   ScienceOn
68 Treschev, S. Y., Chou, P. W., Tseng, T. H., Wang, J. B., Perevedentseva, E. V., and Cheng, C. L., "Photoactivities of the Visible Light-activated Mixed-phase Carbon-containing Titanium Dioxide: The Effect of Carbon Incorporation," Appl. Catal. B, 79, 8-16 (2008).   DOI   ScienceOn
69 Ai, G., Sun, W. T., Zhang, Y.-L., and Peng, L.-M., "Nanoparticle and Nanorod $TiO_2$ Composite Photoelectrodes with Improved Performance," Chem. Commun., 47, 6608-6610 (2011).   DOI   ScienceOn
70 Zhang, S., Zhang, S., Peng, F., Zhang, H., Liu, H., and Zhao, H., "Electrodeposition of Polyhedral $Cu_2O\;on\;TiO_2$ Nanotube Arrays for Enhancing Visible Light Photocatalytic Performance," Electrochem. Commun., 13, 861-864 (2011).   DOI   ScienceOn
71 Xiang, W., Liu, X., Liu, H., Tong, D., Yang, J., and Peng, J., "Coaxial Heterogeneous Structure of $TiO_2$ Nanotube Arrays with CdS as a Superthin Coating Synthesized via Modified Electrochemical Atomic Layer Deposition," J. Am. Chem. Soc., 132, 12619-12626 (2010).   DOI   ScienceOn
72 Chen, C., Cai, W., Long, M., Zhou, B., Wuu, Y., Wuu, D., and Feng, Y., "Synthesis of Visible-light Responsive Graphene Oxide/$TiO_2$ Composites with p/n Heterojunction," ACS Nano, 4, 6425-6432 (2010).   DOI   ScienceOn
73 Yu, J., Ma, T., Liu, G., and Cheng, B., "Enhanced Photocatalytic Activity of Bimodal Mesoporous Titania Powders by $C_{60}$ Modification," Dalton Trans., 40, 6635-6644 (2011).   DOI   ScienceOn