The Properties of the Several Metal Oxides in the Water-splitting for H2 Production

물 분해 수소제조를 위한 금속산화물들의 반응특성

  • Son, Hyun-Myung (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Park, Chu-Sik (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Lee, Sang-Ho (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Hwang, Gab-Jin (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kim, Jong-Won (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Lee, Jin-Bae (Hydrogen Energy Research Center, Korea Institute of Energy Research)
  • 손현명 (한국에너지 기술 연구원 수소.연료전지 연구부 수소에너지 연구 센터) ;
  • 박주식 (한국에너지 기술 연구원 수소.연료전지 연구부 수소에너지 연구 센터) ;
  • 이상호 (한국에너지 기술 연구원 수소.연료전지 연구부 수소에너지 연구 센터) ;
  • 황갑진 (한국에너지 기술 연구원 수소.연료전지 연구부 수소에너지 연구 센터) ;
  • 김종원 (한국에너지 기술 연구원 수소.연료전지 연구부 수소에너지 연구 센터) ;
  • 이진배 (한국에너지 기술 연구원 수소.연료전지 연구부 수소에너지 연구 센터)
  • Published : 2003.09.15

Abstract

The water-splitting process by the metal oxides using solar heat is one of the hydrogen production method. The hydrogen production process using the metal oxides (NiFe2O4/NiAl2O4,CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite) was carried out by two steps. The first step was carried out by the CH4-reduction to increase activation of metal oxides at operation temperature. And then, it was carried out the water-splitting reaction using the water at operation temperature for the second step. Hydrogen was produced in this step. The production rates of H2 were 110, 160, 72, 29, 17, $21m{\ell}/hr{\cdot}g-_{Metal\;Oxide}$ for NiFe2O4/NiAl2O4, CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite respectively in the second step. CoFe2O4/CoAl2O4 had higher H2 production rate than the other metal oxides.

Keywords

References

  1. J. E. Funk and R. M. Reinstorm, I & EC Process Design and Development, Vol. 5, 1996, pp. 336-342
  2. H. Nakajima, M. Sakurai, K. Ikenoya, G-J Hwang, K. Onuki, S. Shimizu, proceeding of the 7th International Conference on Nuclear Engineering, Tokyo, Japan, April, 1999, ICONE 7104
  3. T. Nakamura, Solar Energy, Vol. 19, 1977, p. 467-475 https://doi.org/10.1016/0038-092X(77)90102-5
  4. A. Weidenkaff, A. W.Reller, A. Wokaun. A. Steinfeld, Thermochimica Acta. No.359, 2000, p. 69-75 https://doi.org/10.1016/S0040-6031(00)00508-6
  5. A. Steinfeld, Hydrogen Energy, Vol. 27,2002, pp. 601-619 https://doi.org/10.1016/S0360-3199(01)00176-8
  6. A. Steinfeld. P. Khun. A. Reller. R.Palumbo, J. Murray, Y. Tamaura, Proc. 11th World Hydrogen Energy Conf, Stuttgart, Germany, 1996, p. 601
  7. T. Kodama. S. Miura. T. Shimizu, Y. Kitayama, Energy, Vol. . 22, 1997, pp.1019-1027 https://doi.org/10.1016/S0360-5442(97)00041-8
  8. K. Ehrensberger, A. Frei, P. Khun, H. R.Oswald, P. Hug, Solid State lonics., Vol.78, 1995, pp. 156-160
  9. A. Steinfeld. S. Sanders, R. Palumbo, Solar Energy, Vol. 65, 1999, pp. 43-53 https://doi.org/10.1016/S0038-092X(98)00092-9
  10. A. Aoki, A. Ohtake, T. Shimizu, Y. Kitayama, T. Kodama, Energy, Vol. 25 , 2000, pp. 201-208 https://doi.org/10.1016/S0360-5442(99)00067-5
  11. Y. Tamaura, N. Kojima, N. Hasegawa, M. Inoue, R. Uehara, N. Gokon, H. Kaneko, Hydrogen Energy, Vol. 26, 2001, pp. 917-922 https://doi.org/10.1016/S0360-3199(01)00039-8
  12. T. Sano, N. Hasegawa, M. Tsuji and Y. Tamaura, J. Mater, Chem., 1996, pp. 605-609