• 제목/요약/키워드: water resource

Search Result 1,865, Processing Time 0.026 seconds

The effect of artificial lights on the growth and quality of hydroponic cultivated barley (Hordeum vulgare L.) sprouts (인공조명이 수경재배 새싹보리(Hordeum vulgare L.)의 생장과 품질에 미치는 영향)

  • Kim, Ju-Sung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.62-70
    • /
    • 2021
  • We analyzed the growth and quality characteristics of barley sprouts grown under artificial light sources consisting of a fluorescent lamp or light-emitting diode (LED) in an aquaculture system (grown with water only, without nutrients). At the end of the observation period, the shoots grown under the fluorescent lamp treatment were the longest, followed by the LED treatment and natural light-treatment. It was also observed that growth was faster for sprouts subjected to a non-sterilizing treatment than those subjected to a 70% ethanol treatment. As the seed sowing rate for planting trays increased, the yield of harvested barley sprouts increased; among light treatments, the natural light treatment resulted in the lowest yield, while the fluorescent light treatment resulted in the highest. The total phenol and total flavonoid contents of extracts of the barley sprouts were highest for the natural light treatment, but TEAC and FRAP were both highest for the fluorescent lamp treatment. The essential amino acid content ranged from 41.64 to 45.93 mg/g and was relatively higher for the natural light treatment than the other two treatments, while the content of non-essential amino acids was highest for the LED treatment. The total amino acid content was highest for the LED treatment at 97.47 ± 6.30 mg/g, for which the content of non-essential amino acids (53.17%) was higher than that of essential amino acids (46.83%).

Effects of nutrient solution and artificial light on the growth and physicochemical properties of hydroponically cultivated barley (배양액과 인공광 처리가 수경재배 보리의 성장과 이화학적 특성에 미치는 영향)

  • Kim, Ju-Sung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.2
    • /
    • pp.77-85
    • /
    • 2021
  • Hydroponic cultivation, in which crops are grown without soil and are unaffected by the weather, has many advantages over conventional soil cultivation. The crop's growth can be further accelerated by using nutrient solution in place of water. This study investigated the growth and physicochemical properties of hydroponic barley sprouts under various nutrient solution and artificial light treatments. The shoot, root, and total plant length increased over time, with the fastest growth occurring in the nutrient solution and light-emitting diode (LED) treatments. Fresh and dry plant weights were higher in the fluorescent lamp treatment than in the LED treatment. Barley sprout powder color differed slightly by treatment, with the Hunters L value ranging from 50.79 to 53.77; Hunters a value from -6.70 to -4.42; and Hunters b value from 13.35 to 14.76. The Hunters L and Hunters b values were highest in the LED treatment, whereas the Hunters a value was relatively highest in the fluorescent lamp treatment. The total phenol content was higher in the control than in the nutrient solution treatment; however, the total flavonoid content showed the opposite pattern to that of total phenol content, being highest in plants that were grown in nutrient solution. The Trolox equivalent antioxidant capacity (TEAC) was higher in the control group than in the nutrient solution group. The ferric ion reducing antioxidant power (FRAP) was higher in the fluorescent treatment group than in the LED treatment group. The total amino acid composition ranged from 106.82 to 122.63 mg/g dry powder, with the essential amino acid composition ranging from 47.01 to 56.19 mg/g, and non-essential amino acid composition from 67.86 to 77.66 mg/g. The most frequently detected compositional amino acid was aspartic acid, followed by glutamic acid, alanine, leucine, and valine.

The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering (한국형 인공월면토(KLS-1) 마이크로파 소결에 미치는 영향인자에 관한 실험적 연구)

  • Jin, Hyunwoo;Lee, Jangguen;Ryu, Byung Hyun;Shin, Hyu-Soung;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.2
    • /
    • pp.5-17
    • /
    • 2021
  • The Moon has been an attractive planet as an outpost for deep space exploration since He-3 and water ice which can be used as energy resources were discovered. In-Situ Resource Utilization (ISRU) construction material fabrication method is required for sustainable space planet exploration. In this paper, the possibility of microwave sintering technology for construction material fabrication was evaluated using lunar regolith that can be easily collected from the Moon surface. Experimental assessment of the influence factors on microwave sintering was conducted using a hybrid sintering system for efficient processing. The heat distribution in the furnace was observed using thermal paper that is coated with a material formulated to change color when exposed to heat. Based on this result, sintered cylindrical KLS-1s with a diameter of 1 cm and a height of 2 cm were fabricated. Densities were measured for the sintered KLS-1s under rotating turntable conditions that have an effect of microwave dispersion. The more dielectrics were arranged, the more microwaves were dispersed reducing the heat concentration, and thus a uniformity of sintered KLS-1s was enhanced.

Growth performance and blood profiles of Hanwoo steers at fattening stage fed Korean rice wine residue

  • Kim, Seon Ho;Ramos, Sonny C.;Jeong, Chang Dae;Mamuad, Lovelia L.;Park, Keun Kyu;Cho, Yong Il;Son, Arang;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.812-823
    • /
    • 2020
  • The aim of this study was to investigate the effects of Korean rice wine residue (RWR) on the growth performance and blood profiles of Hanwoo steers in the fattening stage. In situ and in vivo experiments were conducted to analyze rumen fermentation characteristics and total tract digestibility, respectively. Three cannulated Hanwoo steers (mean body weight: 448 ± 30 kg) were used in both analyses. The growth performance of 27 experimental animals in the fattening stage (initial body weight: 353.58 ± 9.76 kg) was evaluated after 13 months of feeding. The animals were divided into three treatment groups (n = 9/group). The treatments comprised total mixed ration (TMR) only (CON), TMR + 10% RWR (10% RWR), and TMR + 15% RWR (15% RWR). The diets of equal proportions were fed daily at 08:00 and 18:00 h based on 2% of the body weight. The animals had free access to water and trace mineral salts throughout the experiment. Supplementation of 15% RWR significantly decreased (p < 0.05) the rumen fluid pH compared with the control treatment, but there was no significant difference in the total volatile fatty acid concentration. It also significantly increased (p < 0.05) dry matter digestibility compared with the other treatments. The total weight gain and average daily gain of the animals in the RWR-supplemented groups were significantly higher (p < 0.05) than those in the control group. Furthermore, the feed intake and feed efficiency of the RWR-supplemented groups were higher than those of the control group. Supplementation of RWR did not affect the alcohol, albumin, glucose, total cholesterol, triglyceride, and low-density lipoprotein concentrations, and aspartate aminotransferase and alanine transaminase activities in the blood; these parameters were within the normal range. The high-density lipoprotein and creatinine concentrations were significantly higher in the 15% RWR group, whereas the blood urea nitrogen concentration was significantly higher in the 10% RWR group than in the other groups. These results suggest that TMR with 15% RWR can serve as an alternate feed resource for ruminants.

Carbon Capture and CO2/CH4 Separation Technique Using Porous Carbon Materials (다공성 탄소재료를 이용한 CO2 포집 및 CO2/CH4 분리 기술)

  • Cho, Se Ho;Bai, Byong Chol;Yu, Hye-Ryeon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.343-347
    • /
    • 2011
  • Due to the strong dependence on fossil fuels within the history of human progress, it leads to disaster of the whole world like flood, shortage of water and extinction of the species. In order to curb carbon dioxide emissions, many technologies are being developed. Among them, porous carbon materials have important advantages over other absorbent, such as high surface area, thermal and chemical resistance, low cost, various pore distribution and low energy requirement for their regeneration. Carbon capture and storage (CCS) has attracted the significant research efforts for reducing green house gas emission using several absorbent and process. Moreover, the absorbent are used for the separation of bio mass gas that contains methane which is considered a promising fuel as new green energy resource. In this review, we summarized the recent studies and trend about the porous carbon materials for CCS as well as separation from the biogas.

Quality characteristics and antioxidant activities of rice cookies prepared with Tenebrio molitor, Protaetia brevitarsis, and Gryllus bimaculatus powder (갈색거저리 유충, 흰점박이꽃무지 유충, 쌍별귀뚜라미 분말을 첨가한 쌀쿠키의 품질특성 및 항산화 활성)

  • Jang, Han-Byeol;Baek, Ju-yeon;Choi, Yun Sang;Jang, Hae Won
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.171-178
    • /
    • 2022
  • In this study, the quality characteristics of rice cookies supplemented with different types of insect powder (Tenebrio molitor, Protaetia brevitarsis, and Gryllus bimaculatus) were assessed according to the quantity of insect powder used (0, 1, 2.5, 5, and 7.5 g). No significant differences were observed in rice cookie densities or water content. The pH value and spread factor decreased with increasing insect powder content (p<0.05); however, a significant increase was observed in the loss rate (p<0.05). Crude ash, crude fat, and crude protein content significantly increased with higher concentrations of insect powder (p<0.05). Moreover, lightness and yellowness decreased, whereas redness increased with higher insect powder concentrations (p<0.05). Hardness significantly decreased, whereas the antioxidant capacities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals increased with higher insect powder concentrations (p<0.05). Finally, insect powder can prove a valuable resource in rice cookie production, considering its nutritional value, consumer preference, and antioxidant properties.

Exploring Countries Eligible for Official Development Assistance Towards Global Forest Conservation Focusing on Green ODA Criteria (Green ODA 요건에 따른 산림 분야 공적개발원조 대상국 탐색)

  • Jang, Eun-Kyung;Choi, Gayoung;Moon, Jooyeon;Jeon, Chulhyun;Choi, Eunho;Choi, Hyung-Soon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.330-344
    • /
    • 2022
  • While deforestation and forest degradation has continued globally, global society has been making efforts to prevent deforestation towards sustainable development. Reforestation in developing countries is linked to Sustainable Development Goals (SDGs) such as climate change mitigation, conservation of biodiversity, eradication of poverty and upholding of human rights. Forest official development assistance (ODA) restores the global forest land, and increases the public benefit. Bilateral forest ODA projects of the Republic of Korea have gradually increased and most of those projects have currently been concentrated in Asian countries. Selecting recipient countries for forest ODA requires more comprehensive approach since the global goals for sustainable development has been widely adapted to ODA strategic plans. We proposed potentially promising countries that are eligible for receiving 'Green ODA' in perspective of economic, social and environment to implement reducing emissions from deforestation and degradation (REDD+), conserving biodiversity, and combating desertification. As a result, the study suggests that forestry cooperation could be expanded from Asian countries more toward South America and African countries. In addition, we emphasized the need to promote convergence and integration with green technology to fundamentally solve the negative impacts of deforestation such as food, energy, water resource shortages, and forest fires. We advocated expanding bilateral ODA in the forestry sector through diversification of project activities, financial sources, and participants. Our study can contribute to the provision of basic information for establishing long-term strategies to expand bilateral cooperation in the forestry sector.

Effects of different inorganic: organic zinc ratios or combination of low crude protein diet and mixed feed additive in weaned piglet diets

  • Oh, Han Jin;Kim, Myung Hoo;Lee, Ji Hwan;Kim, Yong Ju;An, Jae Woo;Chang, Se Yeon;Go, Young Bin;Song, Dong Cheol;Cho, Hyun Ah;Jo, Min Seok;Kim, Dae Young;Kim, Min Ji;Cho, Sung Bo;Kim, Hyeun Bum;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.23-37
    • /
    • 2022
  • Thirty-six weaned piglets with an initial body weight (BW) of 8.43 ± 0.40 kg (28 days of age, ([Landrace × Yorkshire] × Duroc) were randomly assigned to 6 treatments for a 2-week feeding trial to determine the effects of different inorganic zinc (IZ), organic zinc (OZ) or combination of low crude protein diet (LP) and Mixed feed additive (MFA) on diarrhea score, nutrient digestibility, zinc utilization, blood profiles, organ weight, and fecal microflora in weaned piglet diet. The pigs were individually placed in 45 × 55 × 45 cm stainless steel metabolism cages in an environmentally controlled room (30 ± 1℃). The dietary treatments included a negative control (NC), positive control (PC; zinc oxide, 1,000 mg/kg), T1 (IZ : OZ, 850 : 150), T2 (IZ : OZ 700 : 300), T3 (IZ : OZ, 500 : 500), and T4 (LP + MFA [0.1% Essential oils + 0.08% Protease + 0.02% Xylanase]). The daily feed allowance was adjusted to 2.7 times the maintenance requirement for digestible energy (2.7 × 110 kcal of DE/kg BW0.75). This allowance was divided into two equal parts, and the piglets were fed at 08 : 30 and 17 : 30 each day. Water was provided ad libitum through a drinking nipple. The diarrhea score was significantly increased (p < 0.05) in NC treatment compared with other treatments. The apparent total tract digestibility (ATTD) of dry matter (DM), nitrogen (N), and gross energy (GE) was significantly increased (p < 0.05) in the T2 treatment compared with the PC and NC treatments in week 1. In week 2, the ATTD of DM, N, and GE was significantly decreased (p < 0.05) in the NC treatment compared with other treatments. The T3 treatment had significantly higher (p < 0.05) ATTD and apparent ileal digestibility of zinc than the PC and T1 treatments. The Escherichia coli count in feces was significantly decreased in the T4 treatment compared with the NC and T2 treatments. The Lactobacillus count in feces was significantly increased in the T4 and T1 treatment compared with the T2 and T3 treatments. In conclusion, IZ : OZ 500 : 500 levels could improve nutrient digestibility and zinc utilization in weaned piglets, Moreover, MFA in LP diets could be used as a zinc alternative.

Evaluation of the Depth of Improved Soil on Weathered Soil Slopes by Rainfall Duration (강우지속시간에 따른 풍화토사면의 개량토 심도 평가)

  • Yu, Jin-Ju;Lee, Jong-Woo;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Recently, irregular torrential rainfall have frequently occurred due to abnormal climate, and landslide damage is increasing. In Korea, more than 70% of the total land is mountainous areas, appropriate measures are needed to prevent landslides by heavy rainfall. When improved soil is applied to the surface of the slope, it is possible to suppress an increase in groundwater level due to rainfall penetration and secure stability of the slope. In this study, the appropriate depth of improved soil that can confirm the increase in groundwater level and secure stability by applying improved soil to the weathered soil slope was studied. A total of three cases were analyzed for the slope of the cross-section: standard slope for weathered soil (1:1.5, 1:1.8, and 1:2.0). For rainfall conditions, referring to the regional frequency probability rainfall provided by the Water resource Management Information System, the increase in groundwater level by stage was confirmed by assuming a 500-year frequency precipitation maximum duration of 48 hours. As a result of the study, in the case of natural slopes, the slope was completely saturated before 48 hours the rainfall duration, and there was a possibility of collapse. the improvement depth in the slope of 1:1.5 was appropriate for more than 1m from the surface regardless of the rainfall duration, and in the the slope of 1:1.8 was appropriate of 1m for more than 36 hours. in the slope of 1:2.0, it was appropriate for that safety when improved soil of 0.5m for rainfall duration 48 hours or more.

A Study on the Method of Manufacturing Lactic Acid from Ginkgo Biloba Leaf Extraction Byproducts (은행잎 추출부산물로부터의 Lactic acid 제조법에 관한 연구)

  • Euisuk Ko;Hakrae Lee;Woncheol Shim;Soohyeon Lee;Sunjin Kim;Jaineung Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.95-102
    • /
    • 2023
  • Despite the easing of social distancing, demand for non-face-to-face services continues to rise. Recently, the EU is pursuing a comprehensive plastic use reduction by expanding the scope of plastic use regulations for packaging plastics according to the New Cyclical Economy Action Plan(NCEAP). In response to this trend, the packaging industry is moving away from conventional non-degradable/petroleum-based plastics and conducting research on packaging materials using biodegradable plastics such as PLA(Poly Lactic Acid), PBAT(Poly Butylene Adipate-co-butylene Terephthalate). On the other hand, ginkgo leaves occur in large quantities in Korea and act as a cause of slip accidents and flooding. In this study, a method to utilize ginkgo biloba leaf as a new alternative biomass resource was proposed by producing lactic acid through pretreatment, enzymatic saccharification, and fermentation processes. For the efficiency of lactic acid production, a comparative analysis of lignin content from before and after browning was performed. In addition, the degree of glucan extraction was evaluated by applying a pretreatment method using three catalysts: hot water, sulfuric acid, and sodium hydroxide. It is difficult to expect high production of lactic acid with single process. Therefore, an integrated process operation using both the pretreated hydrolyzate and the residual solid enzymatic saccharification solution must necessarily be applied.