Browse > Article
http://dx.doi.org/10.7843/kgs.2021.37.2.5

The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering  

Jin, Hyunwoo (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology)
Lee, Jangguen (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology)
Ryu, Byung Hyun (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology)
Shin, Hyu-Soung (Dept., Dept. of Future Tech. & Convergence Research, Korea Institute of Civil Engrg. and Building Technology)
Kim, Young-Jae (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology)
Publication Information
Journal of the Korean Geotechnical Society / v.37, no.2, 2021 , pp. 5-17 More about this Journal
Abstract
The Moon has been an attractive planet as an outpost for deep space exploration since He-3 and water ice which can be used as energy resources were discovered. In-Situ Resource Utilization (ISRU) construction material fabrication method is required for sustainable space planet exploration. In this paper, the possibility of microwave sintering technology for construction material fabrication was evaluated using lunar regolith that can be easily collected from the Moon surface. Experimental assessment of the influence factors on microwave sintering was conducted using a hybrid sintering system for efficient processing. The heat distribution in the furnace was observed using thermal paper that is coated with a material formulated to change color when exposed to heat. Based on this result, sintered cylindrical KLS-1s with a diameter of 1 cm and a height of 2 cm were fabricated. Densities were measured for the sintered KLS-1s under rotating turntable conditions that have an effect of microwave dispersion. The more dielectrics were arranged, the more microwaves were dispersed reducing the heat concentration, and thus a uniformity of sintered KLS-1s was enhanced.
Keywords
Construction material fabrication; Dielectric; ISRU; Microwave sintering; Turntable;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Agrawal, D. (2006), "Microwave Sintering of Ceremics, Composites and Metallic Materials, and Melting of Glasses", T. Indian Ceram. Soc., Vol.65, No.3, pp.129-144.   DOI
2 Allan, S.M., Merritt, B.J., Griffin, B.F., Hintze, P.E., and Shulman, H.S. (2013), "High-temperature Microwave Dielectric Properties and Processing of JSC-1AC Lunar Simulant", J. Aerosp. Eng., Vol.26, No.4, pp.874-881.   DOI
3 Balla, V.K., Roberson, L.B., O'Connor, G.W., Trigwell, S., Bose, S., and Bandyopadhyay, A. (2012), "First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts", Rapid Prototyping J., Vol.18, No.6, pp.451-457.   DOI
4 Bhattacharya, M. and Basak, T. (2016), "A Review on the Susceptor Assisted Microwave Processing of Materials", Energy, Vol.97, pp.306-338.   DOI
5 Bradshaw, S., Delport, S., and Wyk, E.V. (1997), "Qualitative Measurement of Heating Uniformity in a Multimode Microwave Cavity", J. Microwave Power EE., Vol.32, No.2, pp.87-95.
6 Brent, S. (2019), "Principles for a Practical Moon base", Acta Astronaut., Vol.160, pp.116-124.   DOI
7 Carrier, W.D. (1973), "Lunar Soil Grain Size Distribution", The moon, Vol.6, No.3, pp.250-263.   DOI
8 Carrier, W.D., Mitchell, J.K., and Mahmood, A. (1973), "The Nature of Lunar Soil", J. Soil Mech. Found. Div., Vol.99, pp.813-832.   DOI
9 Christian, S., Lukas, W., and Thomas, R. (2018), "Sustainable Challenges on the Moon", Curr. Opin. Green Sust., Vol.9, pp.8-12.   DOI
10 Fateri, M. and Gebhardt, A. (2015), "Process Parameters Development of Selective Laser Melting of Lunar Regolith for On-site Manufacturing Applications", Int. J. Appl. Ceram. Tec., Vol.12, No.1, pp.46-52.   DOI
11 Goulas, A., Binner, J.G.P., Harris, R.A., and Friel, R.J. (2017), "Assessing Extraterrestrial Regolith Material Simulants for In-situ Resource Utilisation based 3D Printing", Appl. Mater. Today, Vol.6, pp.54-61.   DOI
12 Herzig, R., Keefer, R.M., and Lorenson, C.P. (1988), "Oven Effects Affecting Power Distribution in Microwave Cooking", 23rd IMPI Symposium.
13 Hintze, P.E., Curran, J., and Back, T. (2009), "Lunar Surface Stabilization via Sintering or the Use of Heat Cured Polymers", 47th AIAA Aerospace Science Meeting including The New Horizons Forum and Aerospace Exposition.
14 Iffat, S. (2015), "Relation between Density and Compressive Strength of Hardened Concrete", Concrete Res. Lett., Vol.6, No.4, pp.182-189.
15 James, M.H. and Timothy, R.M. (1996), "Modelling Microwave Heating", Appl. Math. Model., Vol.20, pp.3-15.   DOI
16 Jin, H., Kim, Y.J., Ryu, B.H., and Lee, H. (2020), "Experimental Assessment of Manufacturing System Efficiency and Hydrogen Reduction Reaction for Fe(0) Simulation for KLS-1", J. Korean Geotech. Soc., Vol.36, No.8, pp.17-25.   DOI
17 Ju, H.J. and Zhao, Q. (2009), "Simulation and Experimental Method for Microwave Oven", J. Electron. Sci. Tech. China, Vol.7, No.2, pp.188-191.
18 Kanamori, H., Udagawa, S., Yoshida, T., Matsumoto, S., and Takagi, K. (1998), "Properties of Lunar Soil Simulant Manufactured in Japan", Space, Vol.98, pp.462-468.
19 Kharkovsky, S.N. and Hasar, U.C. (2003), "Measurement of Mode Patterns in a High-power Microwave Cavity", IEEE T. Instrum. Meas., Vol.52, No.6, pp.1815-1819.   DOI
20 Kim, Y.J., Jin, H., Ryu, B.H., Lee, J., and Shin, H.S. (2020), "Microstructure and Mechanical Properties of Microwave Sintered Lunar Regolith Simulant", 2020 Spring meeting of the Korean Ceram. Soc.
21 Kok, L.P., Boon, M.E., and Smid, H.M. (1993), "The Problem of Hot Spots in Microwave Equipment Used for Preparatory", Scanning, Vol.15, No.2, pp.100-109.   DOI
22 Lim, S., Anand, M., and Rouse, T. (2015), "Estimation of Energy and Material Use of Sintering-based Construction for a Lunar Outpost - with the Example of SinterHab Module Design", 46th Lunar. Planet. Sci. Conference, UK, No. 1076.
23 Lim, S., Prabhu, V.L., Anand, M., and Taylor, L.A. (2017), "Extraterrestrial Construction Processes - Advancements, Opportunities and Challenges", Adv. Space Res., Vol.60, No.7, pp.1413-1429.   DOI
24 Lin, T.D., Skaar, S.B., and O'Gallagher, J.J. (1997), "Proposed Remote-control, Solar-powered Concrete Production Experiment on the Moon", J. Aerospace Eng., Vol.10, No.2, pp.104.109.   DOI
25 Lorenson, C. (1990), "The Why's and How's of Mathematical Modelling for Microwave Heating", Microwave World, Vol.11, No.1, pp.14-23.
26 McKay, D.S., Heiken, G.H., Taylor, R.M., Clanton, U.S., Morrison, D.A., and Ladle, G.H. (1972), "Apollo 14 Soils: Size Distribution and Particle Types", Third Lunar Science Conference, Houston, Vol.1, pp.983-994.
27 McKay, D.S., Carter, J.L., Boles, W.W., Allen, C.C., and Allton, J.H. (1994), "JSC-1: A New Lunar Soil Simulant", Eng. Constr. Oper. Space IV, ASCE, pp.857-866.
28 Meurisse, A., Cowley, A., Cristoforetti, S., Makaya, A., Pambaguian, L., and Sperl, M. (2018), "Solar 3D Printing of Lunar Regolith", Acta Astronaut., Vol.152, pp.800-810.   DOI
29 Mishra, R.R. and Sharma, A.K. (2016), "Microwave Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing", Composites: Part A, Vol.81, pp.78-97.   DOI
30 NRMCA (2003), "Concrete in Practice; What, why & how?", CIP 35 - Testing Compressive Strength of Concrete, NRMCA (National Ready Mixed Concrete Association).
31 Oghbaei, M. and Mirzaee, O. (2010), "Microwave Versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications", J. Al l oy Compd., Vol.494, pp.175-189.   DOI
32 Pozar, D.M. (2011), "Microwave Engineering", 4th Edition, John Wiley & Sons, Inc., USA.
33 Ryu, B.H., Baek, Y., Kim, Y.S., and Chang, I. (2015), "Basic Study for a Korean Lunar Simulant (KLS-1) Development", J. Korean Geotech. Soc., Vol.31, No.7, pp.53-63.   DOI
34 Ryu, B.H., Wang, C.C., and Chang, I. (2018). "Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant", J. Aerosp. Eng., Vol.31, No.1, pp.0417083-1-11.
35 Sato, M., Muton, T., Shimotuma, T., Ida, K., Motojima, O., Fujiwara, M., Takayama, S., Mizuno, M., Obata, S., Ito, K., Hirai, T., and Shimada, T. (2003), "Recent Development of Microwave Kilns for Industries in Japan", Proceedings of 3rd World Congress on Microwave and Radio Frequency Applications.
36 Sauerborn, M., Neumann, A., Seboldt, W., and Diekmann, B. (2004), "Solar Heated Vacuum Pyrolysis of Lunar Soil", 35th COSPAR Scientific Assembly.
37 Sikalidis, C. (2011), "Advances in ceramics: Synthesis and characterization, processing and specific applications", IntechOpen.
38 Spray, J.G. (2010), "Generation of a Lunar Regolith Agglutinate Simulant Using Friction Welding Apparatus", Planet. Space Sci., Vol.58, No.14-15, pp.1771-1774.   DOI
39 Taylor, L.A. and Meek, T.T. (2005), "Microwave Sintering of Lunar Soil: Properties, Theory, and Practice", J. Aerosp. Eng., Vol.18, No.3, pp.188-196.   DOI
40 Taylor, L.A., Pieters, C., Patchen, A., Taylor, D.-H.S., Morris, R.V., Keller, L.P., and McKay, D.S. (2010), "Mineralogical and Chemical Characterization of Lunar Highland Soils: Insights into the Space Weathering of Soils on Airless Bodies", J. Geophys. Res.-Planet, Vol.115, E02002, pp.1-14.
41 Weiblen, P. W., Murawa, M. J., and Reid, K. J. (1990), "Prep aration of Simulants for Lunar Surface Materials", Eng. Constr. Oper. Space IV, ASCE, pp.428-435.
42 Weiren, W., Chunlai, L., Wei, Z., Hongbo, Z., Jianjun, L., Weibin, W., Yan, S., Xin, R., Jun, Y., Dengyun, Y., Guangliang, D., Chi, W., Zezhou, S., Enhai, L., Jianfeng, Y., and Ziyuan, O. (2019), "Lunar Farside to be Explored by Chang'e-4", Nat. Geosci., Vol.12, pp.222-223.   DOI
43 Wickersheim, K., Sun, M., and Kamal, A. (1990), "A Small Microwave E-field Probe Utilizing Fiberoptic Thermometry", J. Microwave Power EE., Vol.25, pp.141-148.
44 Zheng, Y., Wang, S., Ziyuan, O., Yongliao, Z., Jianzhong, L., Chunlai, L., Xiongyao, L., and Junming, F. (2009), "CAS-1 Lunar Soil Simulant" Adv. Space Res., Vol.43, No.3, pp.448-454.   DOI
45 Micro Denshi Co., Ltd., "Basics of Microwave", Retrieved from https://www.microdenshi.co.jp/en/microwave/