• Title/Summary/Keyword: water molecule

Search Result 374, Processing Time 0.025 seconds

A Study on the Electrical Properties of Organic Fatty Acid(DMPC) (유기지방산(DMPC)의 전기 특성에 관한 연구)

  • 송진원;구할본;김형곤;신석두;김영진;최영일;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.45-48
    • /
    • 1999
  • Monolayers of lipids on a water surface have attracted much interest as models of biological membranes, but also as precursors of multilayer systems promising many technical applications. Until now, many methodologies have been developed in order to gain a better underst. DMPC molecules have one phosphatidylcholine head group and two long alkyl groups with carbonyl group. Displacement currents generated during the compression of monolayers of DMPC on the surface of water were investigated. As results, the displacement pick was generated when the area per molecule was about 190$\AA$$^2$in low pressure, and it was generated when the area per molecule about 190$\AA$$^2$ in for pressure, and it was generated when the area per molecule about 150 $\AA$$^2$ in high pressure. Also. for the study of photo device measured the absorption rate. the maxim value shown was 2800-2900nm.

  • PDF

Atomic Study of Oxidation of Si(001) surface by MD Simulation

  • Pamungkas, Mauludi Ariesto;Kim, Byung-Hyun;Joe, Min-Woong;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.360-360
    • /
    • 2010
  • Very initial stage of oxidation process of Si (001) surface was investigated using large scale molecular dynamics simulation. Reactive force field potential was used for the simulation owing to its ability to handle charge variation associated with the oxidation reaction. To know the detail mechanism of both adsorption and desorption of water molecule (for simulating wet oxidation), oxygen molecule (for dry oxidation) and their atom constituents, interaction of one molecule with Si surface was carefully observed. The simulation is then continued with many water and oxygen molecules to understand the kinetics of oxide growth. The results show that possibilities of desorption and adsorption depend strongly on initial atomic configuration as well as temperature. We observed a tendency that H atoms come relatively into deeper surface or otherwise quickly desorbed away from the silicon surface. On the other hand, most oxygen atoms are bonded with first layer of silicon surface. We also noticed that charge transfer is only occur in nearest neighbor regime which has been pointed out by DFT calculation. Atomic structure of the interface between the oxide and Si substrate was characterized in atomic scale.

  • PDF

A Study on the sand mold compression strength of the N-process mold mixed with JA-EUN-DO sand. (자은도사(慈恩島砂)를 이용(利用)한 N-Process의 주형강도(鑄型强度)에 관(關)한 연구(硏究))

  • Lee, Won-Sik
    • Journal of Korea Foundry Society
    • /
    • v.4 no.2
    • /
    • pp.102-107
    • /
    • 1984
  • The variations of the mold compression strength were studied by varing the contents of the silicon powder and water glass, silion purities, and molecule rates of the water glass, when domestic JA EUN DO sand is mixed with water glass (sodium silicate) and metallic silicon or ferro - silicon powder by the self - hardening N - PROCESS method. The results obtained from this experiment are as follows; 1) The compression strength of the mold used with metalic powder was higher and more stable than to be used ferro - silicon powder. 2) 6% water glass of 2.8 molecule rate and 1.5% of ferro - silicon of 75% purity for the N - PROCESS used with JA EUN DO sand was suitable mixing rate. 3) The compression strength increased with self - hardening time, and the PH values of the mixture of silicon powder and water glass did not change after 2 hours, but the compression strength increased steadily due to the reaction of remained silicon. 4) It is recommended to take 24 hours for self - hardening time at least.

  • PDF

Physicochemical Properties of Phosphatidylcholine (PC) Monolayers with Different Alkyl Chains, at the Air/Water Interface

  • Yun, Hee-Jung;Choi, Young-Wook;Kim, Nam-Jeong;Sohn, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.377-383
    • /
    • 2003
  • Physicochemical properties of a series of PC monolayers with different alkyl chains (C24, C20, C16, and C8), at the air/water interface were investigated. The surface pressure is influenced mainly by the hydrophobicity of the PCs, which is confirmed by the curve shape and the on-set value of π-A isotherms at the air/water interface by increasing the number of alkyl chain. The on-set values of surface pressure were 125 Ų/molecule for DOPC(C8), 87 Ų/molecule for DPPC(C16), 75 Ų/molecule for DAPC(C20), and 55 Ų/molecule for DLPC(C24), respectively. The orientations of alkyl chains at the air/water interface are closely connected with the rigidity of the monolayers, and it was confirmed by the tendency of monolayer thickness in ellipsometry data. The temperature dependence of a series of PCs shows that the surface pressure decreases by increasing temperature, because the longer the alkyl chain length, the larger the hydrophobic interaction in surface pressure. The temperature effects and the conformational changes of unsaturated and saturated PCs were confirmed by the computer simulation study of the cis-trans transition with POPC and DPPC(C16). The cistrans conformational energy difference of POPC is 62.06 kcal/mol and that of DPPC(C16) is 6.75 kcal/mol. Due to the high conformational energy barrier of POPC, phase transition of POPC is limited in comparison with DPPC(C16).

Molecular Simulation of Influence of Surface Energy on Water Lubrication (표면 에너지가 물 윤활 현상에 미치는 영향에 대한 분자시뮬레이션 연구)

  • Hyun-Joon Kim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.273-277
    • /
    • 2023
  • This paper presents a molecular dynamics simulation-based numerical investigation of the influence of surface energy on water lubrication. Models composed of a crystalline substrate, half cylindrical tip, and cluster of water molecules are prepared for a tribological-characteristic evaluation. To determine the effect of surface energy on lubrication, the surface energy between the substrate and water molecules as well as that between the tip and water molecules are controlled by changing the interatomic potential parameters. Simulations are conducted to investigate the indentation and sliding processes. Three different normal forces are applied to the system by controlling the indentation depth to examine the influence of normal force on the lubrication of the system. The simulation results reveal that the solid surface's surface energy and normal force significantly affect the behavior of the water molecules and lubrication characteristics. The lubrication characteristics of the water molecules deteriorate with the increasing magnitude of the normal force. At a low surface energy, the water molecules are readily squeezed out of the interface under a load, thus increasing the frictional force. Contrarily, a moderate surface energy prevents expulsion of the water molecules due to squeezing, resulting in a low frictional force. At a high surface energy, although squeezing of the water molecules is restricted, similar to the case of moderate surface energy, dragging occurs at the soil surface-water molecule interface, and the frictional force increases.

Intramolecular Esterification by Lipase Powder in Microaqueous Cycohexane (미소 수용 Cyclohexange 중에서 분말 Lipase에 의한 분자내 에스테르화반응)

  • 이민규;감삼규
    • Journal of Life Science
    • /
    • v.5 no.4
    • /
    • pp.155-161
    • /
    • 1995
  • The effects of substrate concentration, enzyme concentration, reaction temperature, and water content were investigated in intramolecular esterification. This study used cyclohexane as organic solvent, power lipase as enzyme, and benzyl alcohol and octanoic acid as substrate. The initial reaction rate was found to be proportional to enzyme concentration; followed Michaelis-Menten equation for octanoic acid; and was inhibited by benzyl alcohol . The observed initial reaction rate first increased, then decreased with increasing reaction temperature, giving rise to the maximum rate at 20$\circ$. The drop in the reaction rate at higher temperature was to partition equilibrium change of substrate between organic solvent and hydration layer of enzyme molecule in addition to the deactivation by enzyme denaturation. Water layer surrounding enzyme molecule seemed to activate in organic solvent and the realistic reaction was done in the water layer. In the enzymatic reaction in organic solvent, the initial reaction rate was influenced by partition quilibrium of substrate, so the optimum condition of substrate concentration, enzyme concentration, reaction temperature, and water content would give a good design tool.

  • PDF

A Study on the Electrical Properties of Biology Thin (생체박막의 전기특성에 관한 연구)

  • 오재한;김동관;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.243-246
    • /
    • 1999
  • The displacement current measuring system used for detecting the dynamic behavior of monolayers at the air-water interface is described. It basically consists of a film balance, a pair of electrodes connected to each other through a sensitive ammeter. Here, one electrode is suspended in air and the other electrode is the water, With Maxwll-displacement-current-measuring method, the phase transitions of Poly(λ-benzyl- L-glutamate)(PBLG) on a water surface were detected, Displacement currents generated during the compression of monolayers of PBLG on the surface of water were investigated. As results, the displacement pick was generated when the area per molecule was about 15 $\AA$$^{2}$ in low pressure, and tit was generarted when the area per molecule about 27$\AA$$^{2}$ in high pressure.

  • PDF

Computational Study of Proline - Water Cluster

  • Lee, Kyung-Min;Park, Sung-Woo;Jeon, In-Sun;Lee, Bo-Ra;Ahn, Doo-Sik;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.909-912
    • /
    • 2005
  • Calculations are presented for the structures of various conformers of the bare proline and proline –($H_2O$) cluster. The effects of hydrogen bonding with a water molecule on the relative stability of the low energy conformers of proline are examined. Microsolvation by a water molecule is predicted to affect the relative stability, structures and the infrared frequencies of the conformers to a large degree.

Lubrication Characteristics of Condensed Water Molecules at Solid Surface through Molecular Simulation (고체표면에 응축된 물 분자의 윤활특성에 대한 분자시뮬레이션 연구)

  • Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.195-202
    • /
    • 2021
  • This paper presents a numerical analysis of the lubrication characteristics of condensed water molecules on a solid surface by conducting molecular dynamics simulations. We examine two models consisting of a simple hexahedral substrate with and without water molecules to reveal the lubrication mechanism of mono-layered water molecules. We perform a sliding simulation by contacting and translating a single asperity on the substrate under various normal loads. During the simulation, we measure the friction coefficient and atomic stress. When water molecules were interleaved between solid surfaces, atomic stress exerted on individual atom and friction coefficient were smaller than those of model without water molecule. Particularly, at a low load, the efficacy of water molecules in the reduction of atomic stress and friction is remarkable. Conversely, at high loads, water molecules rarely lubricate solid surfaces and fail to effectively distribute the contact stress. We found a critical condition in which the lubrication regime changes and beyond the condition, significant plastic deformation was created. Consequently, we deduce that water molecules can distribute and reduce contact stress within a certain condition. The reduced contact stress prevents plastic deformation of the substrate and thus diminishes the mechanical interlocking between the asperity and the substrate.

Study of Methane Storage through Structure Transition of Gas Hydrate (가스하이드레이트 구조 변형을 통한 메탄 저장에 관한 연구)

  • Lee, Ju-Dong;Lee, Man-Sig;Kim, Young-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.54-57
    • /
    • 2006
  • Structure H formation experiments were conducted in a semi-batch stirred vessel using methane as the small guest substance and neohexane(NH), tert-butylmethylether(TBME) and methylcyclohexane(MCH) as the large molecule guest substance (LMGS). The results indicate that the rates of gas uptake and induction times are generally dependent on the magnitude of the driving force. When tert-butyl methyl ether is used as the LMGS rapid hydrate formation, much smaller induct ion time and rapid decomposition can be achieved. Liquid-liquid equilibrium (LLE) data for the above LMGS with water have been measured under atmospheric pressure at 275.5, 283.15K, and 298.15K. It was found that TBME is the most water soluble followed by NM and MCH. The solubility of water in the non-aqueous liquid was found to increase in the following order: MCH

  • PDF