• Title/Summary/Keyword: water level in river

Search Result 1,081, Processing Time 0.027 seconds

Thermal Effluent Effects of Domestic Sewage and Industrial Wastewater on the Water Quality of Three Small Streams (Eung, Chiljang and Buso) during the Winter Season, Korea (동계 저온기의 소하천 수질에 미치는 하·폐수의 온배수 영향)

  • Soon-Jin, Hwang;Jeon, Gyeonghye;Eum, Hyun Soo;Kim, Nan-Young;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.238-253
    • /
    • 2017
  • The sewage and wastewater (SAW) are a well-known major source of eutrophication and greentide in freshwaters and also a potential source of thermal pollution; however, there were few approaches to thermal effluent of SAW in Korea. This study was performed to understand the behavioral dynamics of the thermal effluents and their effects on the water quality of the connected streams during winter season, considering domestic sewage, industrial wastewater and hot spring wastewater from December 2015 to February 2016. Sampling stations were selected the upstream, the outlet of SAW, and the downstream in each connected stream, and the water temperature change was monitored toward the downstream from the discharging point of SAW. The temperature effect and its range of SAW on the stream were dependent not only on the effluent temperature and quantity but also on the local air temperature, water temperature and stream discharge. The SAW effects on the stream water temperature were observed with temperature increase by $2.1{\sim}5.8^{\circ}C$ in the range of 1.0 to 5.5 km downstream. Temperature effect was the greatest in the hot spring wastewater despite of small amount of effluent. The SAW was not only related to temperature but also to the increase of organic matter and nutrients in the connected stream. The industrial wastewater effluent was discharged with high concentration of nitrogen, while the hot spring wastewater was high in both phosphorus and nitrogen. The difference between these cases was due to with and without chemical T-P treatment in the industrial and the hot spring wastewater, respectively. The chlorophyll-a content of the attached algae was high at the outlet of SAW and the downstream reach, mostly in eutrophic level. These ecological results were presumably due to the high water temperature and phosphorus concentration in the stream brought by the thermal effluents of SAW. These results suggest that high temperature of the SAW needs to be emphasized when evaluating its effects on the stream water quality (water temperature, fertility) through a systematized spatial and temporal investigation.

Assessment of Water Pollution by Discharge of Abandoned Mines (휴폐광산 지역에서 유출되는 하천수의 오염도 평가)

  • Kim Hee-Joung;Yang Jay-E.;Ok Yong-Sik;Lee Jai-Young;Park Byung-Kil;Kong Sung-Ho;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.25-36
    • /
    • 2005
  • Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy. Thus these disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. Acid mine drainage (AMD) and waste water effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of Total Dissolved Solids (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. Concentrations of water soluble heavy metals in the Okdong streams were in the orders of Fe>Al>Mn>Zn>Cu>Pb>Cd, indicating Fe from the AMD and waste water effluents contributed greatly to the quality of water and soil in the lower watershed of Okdong stream. Copper concentrations in the effluents from the tile drainage of mine tailings dams were highest during the raining season. Water Pollution Index (WPI) of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailings dams and coal mines flowed into main stream were in the WPI ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9. These results indicated that mining wastes such as AMD and effluents from the closed mines were the major source to water pollution at the Okdong stream areas.

Environmental Studies in the Lower Part of the Han River Vl. The Statistical Analysis of Eutrophication Factors (한강 하류의 환경학적 연구 Vl. 부영양 요인의 통계적 해석)

  • Jung, Seung-Won;Hue, Hoi-Kwon;Lee, Jin-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.78-86
    • /
    • 2004
  • In order to reveal the relationship between the concentration of chlorophyll- a and the environmental factors affecting eutrophication, the present study was biweekly conducted at G stations in the lower part of the Han river during the period from Feb. 24,2001 to Feb. 9,2002. Water temperature was changed from $0.5^{\circ}C$ to $26.4^{\circ}C$, pH was 5.77${\sim}$8.99, DO 3.15${\sim}$14,36 mg $L^{-1}$, BOD 0.90${\sim}$7.45 mg $L^{-1}$, and COD 1.16${\sim}$9.13 mg $L^{-1}$. TN and TP were ranged from 1.68${\sim}$20.96 mg $L^{-1}$, and 0.02 ${\sim}$ 1.17 mg $L^{-1}$, respectively. $NH_4\;^+$-N, $NO_3\;^-$-N, and $PO_4\;^{3-}$-P were ranged from 0.56${\sim}$3.60 mg $L^{-1}$, 0.03${\sim}$7.29 mg $L^{-1}$, and 0.002${\sim}$0.754 mg $L^{-1}$. Chlorophyll- a was extensively changed from 2.29 ${\mu}g\;L^{-1}$ to 136.28 ${\mu}g\;L^{-1}$ by month and stations. Results of nutrients indicated the eutrophic level in this area and water quality was the gradual worsening in the lower stations than those of upper stations during the period studied. The Pearson correlation analysis between the concentration of chlorophyll- a and the environmental factors indicated that BOD, COD, pH, $NH_4\;^+$-N, TP, TN, conductivity and $PO_4\;^{3-}$-P were positive correlation, but $NO_3\;^-$-N was negative. The environmental factors investigated using the principal component method could be triparted. The first factor group included conductivity, BOD, COD, TN, TP, $NH_4\;^+$-N, $PO_4\;^{3-}$-P and SS, the second WT and DO, and the third pH and $NO_3\;^-$-N. Using the stepwise regression analysis, chlorophyll- a was under the influence of conductivity, $PO_4\;^{3-}$-P, $>NO_3\;^-$-N and $NH_4\;^+$-N Chlorophyll-a = 0.3661 ${\times}$ (Conductivity) - 0.3592 ${\times}$ ($PO_4\;^{3-}$-P) - 0.3449 ${\times}$ ($NO_3\;^-$-N)+0.4362 ${\times}$ ($NH_4\;^+$-N.

A Comparative Study of Wetland Change Detection Techniques Using Post-Classification Comparison and Image Differencing on Landsat-5 TM Data (랜�V-5호(號) TM 데이타를 이용(利用)한 구분후(區分后) 비교(比較) 및 영상대차(映像對差)의 습지대(濕地帶) 변화(變化) 탐지(探知) 기법(技法)에 관(關)한 비교연구(比較硏究))

  • Choung, Song Hak;Ulliman, Joseph J.
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.346-356
    • /
    • 1992
  • The extensive Snake River floodplain in Northwest United States has experienced major changes in water channels and vegetation types due to floodings. To detect the change of wetland cover-types for the period of 1985 and 1988, post-classification comparison and image differencing change detection techniques were evaluated using Landsat-5 TM digital data. Differenced infrared-band images indicated better accuracy indices than any visible-band images. A thresholding technique was applied to identify the change and no change categories from the transformed images produced by image differencing. The problems in using different accuracy indices, including the Kappa coefficient of agreement, overall accuracy, producer's accuracy, user's accuracy, and average accuracy(based on both the producer's and user's accuracy approaches) in determining an optimal threshold level, were examined.

  • PDF

On the CMCase Activity from Two species of Trichosporon (Trichosporon의 CMCase 활성에 관하여)

  • 전순배;박종영
    • Korean Journal of Microbiology
    • /
    • v.17 no.4
    • /
    • pp.187-192
    • /
    • 1979
  • Dennis (1972) reported that Trichosporon cutaneum FRI-425 from the petioles of Pheum rhamponticum var, had showed the celluloytic activity. Chun (1977) also suggested that Trichoporon pullulons 225 isolated from the saline water of the Yeoung San River had a similar properties. However, the assay conditions for enzyme activity were not yet investigated. Thus, the present work was undertaken to examine some conditions for CMCase activity and at the same time to compare the activities of crude enzyme produce from above two species of Trichosporon pullulans. The results are as follows; 1. The maximum production of total reducing sugar by crude enzyme of Tr. pululans was after 30 minutes, whereas that of Tr. cutanuem FRI-425 was after 90 minutes. This fact showed that the reaction velocity of enzyme from Tr. pullulans 225 was more faster than that of Tr. cutaneum FRI-425. 2. Two species showed a similar trend to increase the production of reducing sugar in proportion to the increment in substrate concentration and to arrive at maximum level at lmg/ml of substrate concentration. However, Tr. pullulans 225 produced more $50{\mu}g$ of reducing sugar compared to Tr. cutaneum. 3. The optimum PH for CMCase activity is 5.0 for Tr. pullulans 225 as well as Tr. cutaneum FRI-425, and PH stability lie within the range of 6 and 8. In the activity and stability of enzyme on PH changes, enzyme of Tr. cutaneum FRI-425 was more unstable than that of TY. pullulans 225. 4. The optimum temperature for CMCase activity was $40^{\circ}C$, and enzyme activity from Tr. pullulans 225 was more sensitive to temperature changes compared with that of TY. cutaneum. The heat stability was within $40^{\circ}C$, but that was rapidly decreased above $40^{\circ}C$. In comparison of the heat stability for enzyme of Tr. cutaneum FRI-425 with that of Tr. pullulans 225 at the same temperature of $80^{\circ}C$, the former was some 10 percent more stable than the latter.

  • PDF

An Analysis of Market Situation and Industry Trend in Floating Architecture (플로팅 건축물의 시장현황과 산업동향)

  • Lee, Han-Seok;Mun, Chang-Ho;Kang, Young-Hun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.141-144
    • /
    • 2009
  • Nowadays around the world the floating architecture, a new type of architecture sited on water such as ocean, river, canal and lake, has became one of the most important infrastructures for marine cities. This is bemuse of the raising of sea level due to global warming in the world. Therefore many of European countries, Japan, and U.S.A have been developing the technologies and expanding their markets inside and outside of their country for floating architecture This paper is intended to analyze the market situation and the industry trend of domestic and international part in relation to floating architecture The result will be the basis of the research into the technologies and design in order to catch up with the world market of advanced floating architecture.

  • PDF

Water-Blooms (Green-Tide) Dynamics of Algae Alert System and Rainfall-Hydrological Effects in Daecheong Reservoir, Korea (대청호 조류경보제의 녹조현상 동태와 강우-수문학적 영향)

  • Shin, Jae-Ki;Kang, Bok-Gyoo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.153-175
    • /
    • 2016
  • Daecheong Reservoir has suffered eutrophication and water-blooms by blue-green algae from initial impoundment, and algae alert system (AAS) was introduced in 1997. The purpose of this study was to investigate the effect of rainfall and hydrological factors in increase or decrease variability of green-tide and prolonged AAS, studied and analyzed the current situation of AAS has been operating for 19 years (1997~2015) in Daecheong Reservoir. The total issued number of AAS was 46 times, the most frequent period in August and September were 22 times (752 days) and 16 times (431 days), respectively, it accounted for 82.6%. Many number and frequency during this period were significantly associated with rainfall, various discharge and water level. Rainfall and hydrological events are associated with the rainy season of monsoon-Changma and the typhoon, it was concentrated in June~September, total rainfall in this period accounted for 69.9% of the annual rainfall. An increase in inflows was dependent on the intensity, frequency and the amount of rainfall. Accounted for 68.4% of the total annual inflow, it was a time when the most rapidly changing hydrological variability in the reservoir. The total outflow was closely related to rainfall, and compared the distinctive characteristics of hydropower generation and watergate-spillway discharge. In addition, the upreservoir zone of Daecheong Reservoir could be vulnerable to green-tide by regulating discharge of the upstream dam. The issue of AAS was strongly related to the with and without of watergate-spillway discharge. The watergate-spillway discharge had a total of 25 times, it was maximum 17 days from July to September in the year. And the opening times and each duration of the watergate were 1~4 times and the range of 3~37 days, respectively. When the watergate opened, the issue of AAS was maintained to 13 years and the movement of water bodies and green-tide was great about five times than that of non-open, had a profound effect on prolonged AAS within reservoir. In Daecheong Reservoir, Chusori (CHU) area of the So-ok Stream was still showing serious symptoms green-tide levels in the summer, but Janggye (JAN) waters of the main reservoir was pointed out that more important. AAS will be operated by an absolutely consider the rainfall and hydrological effects around the watergate-spillway discharge. The measures of green-tide will be included in the limnological studies more suited to the characteristics of the watershed and reservoir of the our country. Finally, from now on, we will prepare the systematic management and guidelines for vulnerable zone water-blooms that are the source within the reservoir before the monsoon rather than waiting for the arrival of green-tide on the operating stations of AAS.

Experimental Study to Parameterize Salt-Wedge Formations in Coastal Aquifer (해안대수층에서 담수-염수 경계면 형성에 영향을 미치는 조건에 대한 실험적 연구)

  • Park, Hwa-Jun;Kim, Won-Il;Ho, Jung-Seok;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.1005-1015
    • /
    • 2009
  • Saltwater intrusion in coastal aquifer was investigated using a laboratory model. Salt-wedge profiles were reproduced in a porous media tank 140 cm long, 70 cm high, and 10 cm wide. The experiments were performed with various conditions of porous media hydraulic conductivity, salinity, and ground surface slope to assess relationships on salt wedge location and inclination. Salt-wedge profiles induced by saltwater intrusion were observed in porous media equilibrium state, and compared with previously derived formulas of the Glover (1959), Henry (1959) and Strack (1976). It was found that salt-wedge shape and formations were affected by the water level ratio ($H_F/H_S$) due to high hydraulic conductivity, saltwater salinity and ground surface slope. High $H_F/H_S$ of porous media having high hydraulic conductivity shifted the saltwater interface toward the saltwater reservoir. Increasing surface slope of the porous media caused the salt-wedge profile inclination to decrease. Saltwater salinity also contributed to the location of saltwater interface, yet the impact was not more significant than hydraulic conductivity.

Application of Urban Hydrologic Monitoring System for Urban Runoff Analysis (도시유출해석을 위한 도시수문 모니터링 기법 적용)

  • Seo, Kyu-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.37-44
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of urban river basin of Busan local. In this study, process various hydrological data and basin details data which is collected through basin basis data, hydrological monitoring system(EMS-DEU) and automatic water level equipment(AWS-DEU) for urban flood disaster prevention and use as basin input data of ILLUDAS, SWMM and HEC-HMS in order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed detention pond(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

Estimating Concentrations of Pesticide Residue in Soil from Pepper Plot Using the GLEAMS Model

  • Jin, So-Hyun;Yoon, Kwang-Sik;Shim, Jae-Han;Choi, Woo-Jung;Choi, Dong-Ho;Kim, Bo-Mi;Lim, Sang-Sun;Jung, Jae-Woon;Lee, Kyoung-Sook;Hong, Su-Myeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.357-366
    • /
    • 2011
  • BACKGROUND: Mathematical model such as GLEAMS have been developed and successfully applied to upland fields to estimate the level of pesticide residues in soil. But, the GLEAMS model rarely applied to the Korean conditions. METHODS AND RESULTS: To evaluate pesticide transport in soil residue using the GLEAMS model from pepper plot, Alachlor, Endosulfan, Cypermethrin and Fenvalerate were applied for standard and double rate. Soil sampling was conducted and decaying patterns of pesticides were investigated. Observed climate data such as temperature and irrigation amount were used for hydrology simulation. The observed pesticide residue data of 2008 were used for parameter calibration, and validation of GLEAMS model was conducted with observed data of 2009. After calibration, the $K_{oc}$ (Organic carbon distribution coefficient) and WSHFRC (Washoff fraction) parameters were identified as key parameters. The simulated concentrations of the pesticides except Fenvalerate were sensitive to $K_{oc}$ parameter. Overall, soil residue concentrations of Alachlor, Cypermethrin and Fenvalerate were fairly simulated compared to those of Endosulfan. The applicability of the GLEAMS model was also confirmed by statistical analysis. CONCLUSION(s): GLEAMS model was eligible for evaluation of pesticide soil residue for Alachlor, Cypermethrin and Fenvalerate.