• Title/Summary/Keyword: water contact angle

Search Result 697, Processing Time 0.027 seconds

Development of Reinforced Bio-filament Composites Composed of Agricultural By-product for 3D Printing Technologies

  • Cheong, Kyu Min;Kim, Hye Been;Seo, Yu Ri;Lim, Ki Taek
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.108-108
    • /
    • 2017
  • In this study, biocomposite filaments with agricultural by-products can be used in extrusion-based 3D (Three-dimensional) printing. Extrusion-based 3D printing stands as a promising technique owing to its versatility. We hypothesized that bio-filament composite consisted of something derived from agricultural by-products could be used as 3D printing materials that could overcome the drawbacks of PCL (poly-caprolactone). Bio-filament mixed with PCL and agricultural by-products was defined as r-PCL in this study. In order to find it out the optimal mixing ratio of filaments, we had investigated PCL, r-PCL 10%, r-PCL 20%, r-PCL 50% separately. The morphological and chemical characteristics of the filaments were analyzed by FE-SEM (Field emission scanning electron microscope) and EDX (Energy-dispersive X-Ray spectroscopy), and the mechanical properties were evaluated by stress-strain curve, water contact angle, and cytotoxicity analysis. Results of this study have been shown as a promising way to produce eco-friendly bio-filaments composite for FDM (Fused deposition modeling) method based 3D printing technology. Thus, we could establish biomimetic scaffolds based on bio-printer filaments mixed with agricultural by-product.

  • PDF

Surface Characteristics of Sputter Etched Poly(ethylene terephthalate) and Nylon 6 Films (Sputter Etching한 Poly(ethylene terrephthalate)와 Nylon 6 Film의 표면특성)

  • Kang, Koo;Wakida, T.;Cho, In-Sul;Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 1991
  • Poly(ethylene terephthalate)(PET) and nylon 6 films stretched uniaxially and biaxially were sputter etched in the presence of argon gas. The surface of the etched films was investigated using a scanning electron microscope(SEM). While cracks perpendicular to the stretched direction were observed in the uniaxil stretched films sputter etched for 30 min., many protrusions were formed in the biaxial stretched films at the height of 0.3-0.4 gm for PET and $0.1-0.2\mum$ for nylon 6. The tops of two or three protrusions merged etching time increased to 60 min. The contact angle to water of the sputter etched PET and nylon 6 films decreased steeply when etched for one to 3 min. In order to investigate chemical changes on the surface ESCA analysis was carried out. In both films sputter etched $C_{1s}$ intensity decreased and $O_{1s}$ intensity increased compared with the unetched ones.

  • PDF

Surface Modification of Cellulose Acetate using $UV/O_3$ Irradiation

  • Lee, Hae-Sung;Jeong, Yong-Kyun;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.35-41
    • /
    • 2006
  • Upon $UV/O_3$ irradiation cellulose acetate (CA) films showed modified surface properties such as increased hydrophilicity and surface roughness as well as increased dyeability to cationic dyes. UV treatment induced photoscission of acetyl groups in the main chain of CA resulting in decreased degree of substitution from 2.2 to 1.3. The slight decreases in reflectance and transmittance were caused by remarkably increased nano-scale surface roughness of the CA surface as much as 20-fold, which can destructively interfere with visible lights of wavelength lower thu 500nm. Water contact angle decreased from $54^{\circ}\;to\;14^{\circ}$ with increasing UV energy. Surface energy also increased slightly. The surface energy change was attributed to significant contribution of polar component rather than nonpolar component indicating surface photooxidation of CA film. The increased dyeability to cationic dyes in terms of both K/S and %E may be due to photochemically introduced anionic and dipolar dyeing sites on the film surfaces.

Hydrophobic Properties of PTFE Thin Films Deposited on Glass Substrates Using RF-Magnetron Sputtering Method (고주파 마그네트론 스퍼터링 방법을 사용하여 유리 기판 위에 증착된 PTFE 박막의 발수 특성)

  • Kim, Hwa-Min;Kim, Dong-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.886-890
    • /
    • 2010
  • The polytetrafluoroethylene (PTFE) films are deposited on glass using conventional rf-magnetron sputtering method. Their hydrophobic properties are investigated for application as an anti-fouling coating layer on the screen of displays. It is found that the hydrophobicity of PTFE films largely depends on the sputtering conditions, such as Ar gas flow and deposition time during sputtering process. These conditions are closely related to the deposition rate or thickness of PTFE film. Thus, it is also found that the deposition rate or the film thickness affects sensitively the geometrical morphology formed on surface of the rf-spluttered PTFE films. In particular, the PTFE film with 1950 nm thickness deposited for 30 minute at rf-power 50 W shows a very excellent optical transmittance of over 90% and a good anti-fouling property and a good durability.

A research on the tunnel insulator pollution characteristic in Korea Railroad (철도 터널구간 애자류 오염도 분석에 관한 연구)

  • Jeon, Yong-Joo;Lee, Tea-Hoon;Choi, Kyoung-Il;Lee, Shi-Bin;Han, Sang-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1169_1170
    • /
    • 2009
  • This paper introduces insulator pollutant accumulate pattern in the tunnel of korea railroad. To accomplish this goal, effective sample collecting method was proposed for the first step. Dust at the surface was collected directly. Distilled water and brush was used while collecting. Through this method dust is easily and accurately collected. The second step is pollutant analysis. Several analyze item is selected such as quantity, conductivity, contact angle, Optical Microscope(OM), IR, Equivalent Salt Deposit Density(ESDD), and ICP-AES. The third step, best represent tunnel was selected considering location, length and natural surroundings. Also to consider the difference at inside the tunnel, several bracket insulators were selected along to the location. To make the result precise, above procedure was repeated several times at the same target. Finally relation among type of train, numbers of movement, surroundings, length will be considered in combination with the pollution. With this result pollute map for KORAIL could be accomplished and inspect period will be optimized case by case.

  • PDF

Preparation and characterization of PVDF/TiO2 composite ultrafiltration membranes using mixed solvents

  • Tavakolmoghadam, Maryam;Mohammadi, Toraj;Hemmati, Mahmood
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.377-401
    • /
    • 2016
  • To study the effect of titanium dioxide ($TiO_2$) nanoparticles on membrane performance and structure and to explore possible improvement of using mixed solvents in the casting solution, composite polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc) and addition of $TiO_2$ nanoparticles. Properties of the neat and composite membranes were characterized using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), Atomic force microscopy (AFM) and contact angle and membrane porosity measurements. The neat and composite membranes were further investigated in terms of BSA rejection and flux decline in cross flow filtration experiments. Following hydrophilicity improvement of the PVDF membrane by addition of 0.25 wt.% $TiO_2$, (from $70.53^{\circ}$ to $60.5^{\circ}$) degree of flux decline due to irreversible fouling resistance of the composite membrane reduced significantly and the flux recovery ratio (FRR) of 96.85% was obtained. The results showed that using mixed solvents (DMAc/TEP) with lower content of $TiO_2$ nanoparticles (0.25 wt.%) affected the sedimentation rate of nanoparticles and consequently the distribution of nanoparticles in the casting solution and membrane formation which influenced the properties of the ultimate composite membranes.

A Study on the Ultraviolet Aging Characteristics of Outdoor Polymeric Insulating Materials (옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Kim, Yeong-Seong;Jeong, Sun-Ok
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.409-413
    • /
    • 1999
  • Recently, the polymeric insulators have been accepted in several countries for the outdoor high voltage applications. In comparison with the conventional porcelain, polymeric insulators offer various advantages such as light weight, superior vandal resistance and better contamination performance. The outdoor polymeric insulating materials such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-ray on the surface of silicone rubber were investigated by using the weather-Ometer. The accelerated aging stresses were simulated by UV radiation, high temperature and humidity as well as water spray. These aging characteristics were examined through contact angle measurements, tracking resistance test, FT-IR and SEM/EDS analysis. The experimental results showed that tracking resistance decreases with increase in the UV-ray irradiation period. But the surface of silicone rubber kept hydrophobicity. It is found that the inorganic filler such as)$ Al(OH_3$ improves tracking resistance and the $Tio_2$is very effective in preventing degradation of silicone rubber surface from UV-ray.

  • PDF

Development of Clamp Type Transferring Mechanism for Package Substrate's Wet Process (패키지 기판 습식 공정용 클램프 이송 장치의 개발)

  • Ryu, Sun-Joong;Heo, Jun-Yeon;Cho, Seung-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.193-201
    • /
    • 2011
  • Clamp type transferring mechanism for package substrate's wet processes was newly developed instead of conventional roller type transferring mechanism. Clamp type transferring mechanism has the advantages of reducing the panel deflection and of minimizing the contact problem between the panel and the transferring mechanism. Individual clamp of the mechanism has two distinct mechanical functions which are perfectly fixing a panel during the transferring and generating adequate tension for the panel. To determine the mechanical parameters of the clamp, panel deflection simulation was conducted and the result was verified by the panel deflection measurement. Also, fixing angle of a clamp could be determined by the free body force analysis of individual clamp. Finally clamp type transferring mechanism was actually manufactured and the transferring performance was verified during the water spraying condition of the package substrate's wet processes.

Separation of Silicon and Silica by Liquid-Liquid Extraction

  • Fujita, Toyohisa;Oo, Kyaw-Zin;Shibayama, Atsushi;Miyazaki, Toshio;Kuzuno, Eiichi;Yen, Wan-Tai
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.719-724
    • /
    • 2001
  • The objective of this investigation was to separate silicon and silica for recycling by the liquid-liquid separation technique. In the preparation of silicon (Si) single crystal, a small amount of silicon is fixed on the surface of silica (quartz, $SiO_2$) crucible. The used crucible is crushed for recycling both silicon and silica in a high purity from the mixed powder. Zeta-potential of silicon and silica are almost the same at pH higher than 3. Their separation by simple flotation is ruled out. However, their hydrophobic characteristics are different in several different organic solvent from the measurement of contact angle. Therefore, the liquid-liquid extraction is employed to separate silicon and silica. The result indicates that the organic solvent mixed with dodecyl ammonium acetate could extracted the silicon powder at high purity (97-100%) with high recovery from the silica powder in the water phase.

  • PDF

Dielectric properties of Pt/PVDF/Pt modified by low energy ion beam irradiation

  • Sung Han;Yoon, Ki-Hyun;Jung, Hyung-Jin;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.110-110
    • /
    • 1999
  • Polyvinylidenefluoride (PVDF) is most used in piezoelectric polymer industry. Electrode effect on the electrical properties of PVDF has been investigated. al has been used due to fair adhesion for PVDF. Work function of metal plays an important role on the electrical properties of ferroelectrics for top and /or bottom electrode. However, Al has much lower work function than Pt or Au and so leakage current of Al/PVDF/Al may be large. Pt or Au has not been used for electrode of PVDF system due to poor adhesion. PVDF irradiated by Ar+ ion beam with O2 environment takes good adhesion to inert metal. Contact angle of PVDF to triple distilled water was reduced from 75$^{\circ}$ to 31$^{\circ}$ at 1$\times$1015 Ar+/cm2. Working pressure was 2.3$\times$10-4 Torr and base pressure was 5$\times$10-6 Torr. Pt was deposited by ion beam sputtering and thickness of pt film was about 1000$\AA$. in previous study, enhancing adhesion of Pt on PVDF was shown. in this study, effect of electrode on PVDF will be represented.

  • PDF