• Title/Summary/Keyword: water chemical characteristics

Search Result 2,151, Processing Time 0.031 seconds

Adsorption Charateristics of Tartrazine by Activated Carbon (활성탄에 의한 Tartrazine의 흡착 특성)

  • Yoon, Sung Wook;Lee, Jong-Jib
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.568-572
    • /
    • 2009
  • The adsorption characteristics of tartrazine by granular activated carbon were experimentaly investigated in the batch adsorber and the packed column. The adsorptivity of activated carbon for tartrazine was largely improved by pH control, and 98 percent of initial concentration could be removed at pH 3. It was estabilished that the adsorption equilibrium of tartrazine on granular activated carbon was sucessfully fitted by Freundlich isotherm equation in the concentration range from 50 mg/L to 1,000 mg/L. The characteristics of breakthrough curve of activated carbon packed column, which depend on the design variables such as initial concentration, bed height, and flow rate, were studied.

Ozone Generation Characteristics with Pulse Power Supply (펄스전원을 이용한 오존발생특성)

  • Cho, Kook-Hee;Kim, Young-Bae;Lee, Hong-Sik;Kim, Hag-Gyu;Lee, Jong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1837-1839
    • /
    • 2003
  • Recently deep interests have been paid on the effective generation of ozone, which has been widely used for water treatment, deoderization, color removal and chemical processing of exhausted smoke. The silent discharge reaction has been proposed as the most effective in the many ozone generation methods by electric discharge, because silent discharge excel others in the condition of high ozone generation yield and low power consumption. In this paper, ozone water generated system measure with silent discharge characteristics and pulsed power supply.

  • PDF

Characteristics and Dyeability of Juniperus Chinensis Extracts (향나무 추출 색소의 특성 및 염색성)

  • Nam, Ki Yeon;Lee, Jung Soon
    • Korean Journal of Human Ecology
    • /
    • v.21 no.5
    • /
    • pp.989-1004
    • /
    • 2012
  • The purpose of this study was to investigate the characteristics of the pigment and the dyeability of juniperus chinensis needles, berry, bark and heartwood extracts using distilled water, methanol, normal butanol and ethyl acetate as a solvent. Ultraviolet-visible absorption spectrum bands of the extracts were measured at around 280nm to 320nm in all the solvent extracts. The maximum absorption wavelength was able to determine tannin. All the solvent extracts except for distilled water extracts were able to confirm the presence of chlorophyll. Infrared absorption spectra (FT-IR) of all parts of the extracts showed broad absorption bands of OH due to phenolic-OH, benzene CH peak of phenol chemical structure, ether-based stretching vibration peak and the peak of flavonoid compounds that appeared in all the solvent extracts. The yield of juniper needles and heartwood in distilled water and methanol extraction were effective. Extraction of berry yields in distilled water was also effective. The yield of ethanol extraction from the bark showed better efficiency. As a result of using distilled water for the dye solution, the color of the fabrics dyed with all extracts of the needles and Y series berries generally showed light Y progression with a strong red tinge. By using a mixture of 20% ethanol and 80% distilled water for the dye solution, the color of the fabrics dyed with needles and berry extracts showed Y series dominantly. The color of the fabrics dyed with Bark and heartwood extracts were dominantly R series.

Growth Performance and Meat Quality of Broiler Chickens Supplemented with Bacillus licheniformis in Drinking Water

  • Liu, Xiaolu;Yan, Hai;Lv, Le;Xu, Qianqian;Yin, Chunhua;Zhang, Keyi;Wang, Pei;Hu, Jiye
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.682-689
    • /
    • 2012
  • A feeding trial was conducted to investigate effects of Bacillus licheniformis on growth performance and meat quality of broilers. Nine hundred one-d-old broiler chicks were randomly assigned to 3 experimental groups with three replicate pens of 100 broiler chicks. Three treatments were i) control, ii) basal diets supplemented with 1 ml of B. licheniformis for each in feed water per day iii) basal diets supplemented with 2 ml of B. licheniformis per chick in feed water per day. The supplementation of B. licheniformis significantly increased body weight in grower chickens (p<0.05), and significantly improved the feed conversion in 3 to 6 and 0 to 6 wk feeding period compared with the control group (p<0.05). Additionally, the supplement also resulted in increased protein and free amino acid contents, and decreased fat content in chicken breast fillet (p<0.05). Furthermore, improvement in sensory attributes was observed in broilers fed with the probiotic. In conclusion, B. licheniformis treatments resulted in a significant increase (p<0.05) in broiler productivity based on an index taking into account daily weight gain and feed conversion rate. Meanwhile, the probiotic contributed towards an improvement of the chemical, nutritional and sensorial characteristics of breast fillet. Overall, the study indicates that B. licheniformis can be used as a growth promoter and meat quality enhancer in broiler poultry.

Characteristics of tamiflu occurrence in surface water using LC/MS/MS (LC/MS/MS를 이용한 하천수 중 항바이러스제 타미플루 잔류 특성)

  • Shin, Sun-Kyoung;Kang, Young-Yeul;Park, Jin-Soo;Koo, So-Hyun;Hwang, Seung-Ryul;Kim, Woo-Il;Song, Ki-Bong;Kim, Young-Hee;Kim, Tae-Seung;Han, Jin-Suk
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.147-154
    • /
    • 2010
  • Oseltamivir carboxylate (OC) and Oseltamivir ethylester (OE) were analyzed to evaluate the environmental distribution in pandemic season in Korea. The detected concentration of OE was the range of $0.008\sim0.087\;{\mu}g/L$, and OC was the range of $0.029\sim0.287\;{\mu}g/L$. The detected concentration of OC in this study was two times higher than reported concentration of OC in river water in Japan. But, these analytical results cannot be directly compared to the previous reported concentration, because of the different sampling period.

Analyses of the Environmental Characteristics of Ponds in Golf Courses for Ecological Management (골프장 연못의 생태적 관리를 위한 환경특성 분석)

  • Ahn Deug-Soo;Kim Chang-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.51-77
    • /
    • 2006
  • Pond management is a critical part of overall golf course management, both during growth and maintenance modes of turf care. This study investigated 48 ponds in nine 18- or 27-hole golf courses to analyze the environmental characteristics of ponds. The research process had three phases: (1) inventory and analysis of grading plans and drainage plans, (2) field verification and interviews with greenskeepers, and (3) analyses of water quality and statistics. All data were collected from May to August in 2004. The results of this study can be summarized as follows: 1. It is desirable to site a golf course in a small watershed with high watershed eccentricity to control storm water runoff efficiently and to minimize soil erosion during construction. 2. The siting and size of a pond should be determined through a land-use analysis of the watershed for the purpose of ecological management. The bigger the forest-to-golf course ratio, the better the water quality will be. 3. The size and capacity of each individual ponds varied and there were many somewhat longish rather than round ponds. 4. There were many differences among golf courses in naturalness of the ponds, and the correlation between naturalness and area of aquatic plants was very high. 5. Analyses of pond water quality indicated that the degrees of Dissolved Oxygen, Chemical Oxygen Demanded and Suspended Solids were relatively low values but Total Phosphorus and Total Nitrogen were too high. Therefore a systematic approach is needed to solve e problem. Pesticide residues were not detected in all ponds. 6. Water depth and area of hydrophyte should be considered when designing an ecological pond. 7. All ponds used storm water as a main source of water supply and added underground water. Aquatic plants and physical methods such as water aeration and spray fountains were the main choices for maintaining a healthy aquatic environment.

Permeability recovery and changes in fouling layer characteristics of PTFE membrane by enhanced backwash cleaning using NaOCl during coagulation and microfiltration (응집 및 정밀여과공정의 강화역세정시 NaOCl에 따른 PTFE막 투과능 회복과 막오염층 변화)

  • Kang, Sun Gu;Park, Keun Youg;Kwark, Dong-Geun;Kim, Yun-Jung;Kweon, Jihyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.233-241
    • /
    • 2015
  • Polytetrafluoroethylene (PTFE) membrane has high resistance to chlorine, which is a great advantages in chemical cleaning to recover water flux during membrane processes in drinking water systems. A humic kaolin water with approximately 4 mg/L of DOC and 10 NTU of turbidity was prepared as a feed water. Coagulation pretreatment with or without settling was applied. The coagulation with settling showed the greatest water production. The reduced flux was effectively recovered by NaOCl cleaning, i.e., 21% recovery by 50 mg/L of NaOCl cleaning and 49% recovery by 500 mg/L NaOCl cleaning. The images of SEM and AFM analyses were corresponded to the water flux variation. However, when the floc was accumulated on the membrane surfaces, the efficiency of NaOCl cleaning was substantially limited. In addition, dynamic contact angle became greater after cleaning, which indicates changes in characteristics of fouling layer such as surface hydrophobicity. Proper cleaning technologies during enhanced backwash using NaOCl would expand application of PTFE membranes in drinking water systems.

Review of Nanoparticles in Drinking Water: Risk Assessment and Treatment (나노입자의 현황조사 및 처리방안 마련을 위한 문헌연구)

  • Kim, Seung-Hyun;Hong, Seung-kwan;Yoon, Je-Yong;Kim, Doo-Il;Lee, Sang-Ho;Kweon, Ji-Hyang;Kim, Hyung-Soo;ko, Seok-Dock;Kuk, Ji-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.201-212
    • /
    • 2011
  • Nanotechnology is the applied science which develops new materials and systems sized within 1 to 100 nanometer, and improves their physical, chemical, and biological characteristics by manipulating on an atomic and molecular scale. This nanotechnology has been applied to wide spectrum of industries resulting in production of various nanoparticles. It is expected that more nanoparticles will be generated and enter to natural water bodies, imposing great threat to potable water resources. However their toxicity and treatment options have not been throughly investigated, despite the significant growth of nanotechnology-based industries. The objective of this study is to provide fundamental information for the management of nanoparticles in water supply systems through extensive literature survey. More specifically, two types of nanoparticles are selected to be a potential problem for drinking water treatment. They are carbon nanoparticles such as carbon nanotube and fullerene, and metal nanoparticles including silver, gold, silica and titanium oxide. In this study, basic characteristics and toxicity of these nanoparticles were first investigated systematically. Their monitoring techniques and treatment efficiencies in conventional water treatment plants were also studied to examine our capability to mitigate the risk associated with nanoparticles. This study suggests that the technologies monitoring nanopartilces need to be greatly improved in water supply systems, and more advanced water treatment processes should be adopted for better control of these nanoparticles.

Assessment of Seasonal Variation in Water Quality in Daedong Lake (대동호의 시기별 및 계절별 수질변화 평가)

  • Yun, Jin-Ju;Kang, Se-Won;Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Hyun-Woo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.197-203
    • /
    • 2020
  • BACKGROUND: Most lakes have increased concerns about water pollution due to the inflow of non-point sources caused by human activities. Therefore, the lake water quality survey was conducted in order to propose effective plans for water quality management by analyzing the characteristics of lakes and the change of water quality. METHODS AND RESULTS: In order to investigate the physicochemical water quality in Daedong lake, water quality analysis was undertaken from July 2018 to June 2019. Water temperature was ranged from 7.8 to 34.3℃ and pH varied from 6.9 to 10.2. The concentration of Dissolved oxygen, Suspended solid, Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand (COD) were 5.6 ~ 17.2 mg/L, 2.4 ~ 35.3 mg/L, and 4.5 ~ 15.1 mg/L, and 0.9 ~ 2.8 mg/L, respectively. The Total Nitrogen (T-N) concentration ranged from 0.974 ~ 2.126 mg/L, and Total Phosphorus (T-P) concentration ranged from 0.014 ~ 0.057 mg/L. The Chlorophyll-a (Chl-a) ranged from 2.7 ~ 37.9 mg/㎥. Through Carlson TSIm assessment using T-P and Chl-a results, evaluating trophic state, Daedong lake was evaluated as mesotrophic. CONCLUSION: Water pollution management plan needs such as nutrient removal technology and nonpoint source management for prevention of eutrophication in Daedong lake.

Safety and Physicochemical Quality Evaluation of Processed Meat Products Using Deep Sea Water (해양심층수를 활용하여 제조한 식육가공품의 안전성 및 이화학적 품질평가)

  • Kim, Seong-Yeon;Park, Young-Sig;Park, Kun-Taek
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.460-465
    • /
    • 2018
  • Deep sea water is deeper than 200 m in depth and maintains cool temperatures. It is clean seawater not contaminated by E. coli and other general bacteria. Because deep sea water is a recyclable resource with high industrial value, activities for commercial use are vigorously developing. We investigated safety, quality characteristics, and mineral contents of prototype products using deep sea water as a substitute for a curing agent and compared it with existing commercially processed products. This study examined the potential of deep sea water as an alternative to curing agent solution. As a result, safety and quality characteristics of processed meat products with deep sea water were not different from commercially processed meat products, but mineral contents were higher in processed meat products with deep sea water. Deep sea water could be widely used as purity salt and purity minerals that can replace chemical substances such as chemical salts. A new, active food market using deep sea water will emerge in the near future.