• Title/Summary/Keyword: water activity and temperature

Search Result 975, Processing Time 0.026 seconds

An Exploratory Research on PCC Application of Crystalline Limestone: Effects of Limestone Crystallographic Characteristicson Hydraulic Activity

  • Yang, Ye-Jin;Jegal, Yu-Jin;Nam, Seong-Young;Kim, Jin;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • Quicklime(CaO) is generally obtained through the calcination of limestone, the main component of which is calcium carbonate($CaCO_3$). Quicklime generates high-temperature heat when reacting with water, forming slaked lime($Ca(OH)_2$). The industrial sectors for limestone are determined by the hydraulic activity of slaked lime, which is obtained by measuring temperature changes during the hydration reaction. Accordingly, this study examined the different crystallographic characteristics of limestone as affected by the geological origins of the regions where the limestones were produced, and how these characteristics affected hydraulic activity. Six limestone samples were collected from the Jecheon and Cheongsong areas and the hydraulic activities were measured in accordance with KS E 3077. The results indicate that limestone produced in the Cheongsong area, recrystallized through metamorphism caused by hydrothermal alteration, hada larger grain size of calcite than that of the Jecheon area, and displays a tendency of changing to marble. Limestone from the Cheonsong area showed more radical reaction in the early stage of hydration compared to that ofthe Jecheon area. In addition, it was revealed that limestone having more impurities like $SiO_2$ have lower hydraulic activity.

Corrosion Fatigue Cracking of Low Alloy Steel in High Temperature Water

  • Lee, S.G.;Kim, I.S.;Jang, C.H.;Jeong, I.S.
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • Fatigue crack growth test or low alloy steel was performed in high temperature water. Test parameters were dissolved oxygen content. loading frequency and R-ratio ($P_{min}/P_{max}$). Since the sulfur content or the steel was low, there were no environmentally assisted cracks (EAC) in low dissolved oxygen(DO) water. At high DO, the crack growth rate at R = 0.5 tests was much increased due to environmental effects and the crack growth rate depended on loading frequency and maximized at a critical frequency. On the other hand, R = 0.7 test results showed an anomalous decrease of the crack growth rate as much different behavior from the R = 0.5. The main reason of the decrease may be related to the crack tip closure effect. All the data could be qualitatively understood by effects of oxide rupture and anion activity at crack tip.

Seasonal Changes in Reproductive Condition of the Pacific Oysters, Crassostrea gigas (Thunberg) from Suspended Culture in Gosung Bay, Korea

  • Thao T. T. Ngo;Kang, Sang-Gyun;Park, Kwang-Sik
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.268-275
    • /
    • 2002
  • Seasonal variation in reproductive condition of the Pacific oyster Crassostrea gigas was investigated from a suspended cultured oyster population in Gosung Bay, South Korea using histological techniques, Gametogenesis of oysters initiated in February when water temperature reached 11 to $13^\circ{C}$. Increase in oocyte size and the number resulting in follicle expansion was observed from March to May First spawning of oysters observed in mid Jun when the surface water temperature reached 22 to $25^\circ{C}$. Spawning activity of oysters extended from mid June to late September with two marked spawning peaks in June and August. Most oysters collected from October to December exhibited few residual eggs in packed follicles exhibiting a typical spent condition. No gametes were observed from December to February from oysters collected in the Bay. Gonadal development of oysters in the Bay seemed to follow a seasonal fluctuation in environmental conditions such as water temperature and food availability in the water column. Spawning of oysters in late June was in part associated with sudden drop in salinity due to vast amount of freshwater input in the Bay after the summer flooding. Sex ratio of oysters was 59.5% male and 39.8% female. Less than 1 percent (0.6%) of the oysters examined were hermaphrodite; few eggs were observed in testis.

Enhancement of Anti-Obesity Activities of Aronia melanocarpa Elliot Extracts from Low Temperature Ultrasonification Process (아로니아 저온 초음파 추출물의 항비만 활성 증진)

  • Kim, Nam Young;Lee, Jeong Min;Lee, Jae Yong;Lee, Hyeon Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.4
    • /
    • pp.309-316
    • /
    • 2016
  • Background: This study represents the first report that the anti-obesity activity of ethanol extracts of Aronia melanocarpa can be enhanced through ultrasonification at a frequency of 120 kHz at $60^{\circ}C$ (UE). Methods and Results: The amounts of cyanidin-3-O-galactose (cya-gal), a major anthocyanin in A. melanocarpa were higher by up to 402.4 mg/100 g, as compared with 221.4 mg/100 g and 322.1 mg/100 g, for hot water at $100^{\circ}C$ and 70% ethanol at $80^{\circ}C$ respectively. This result should cause the higher antioxidant activities of the UE than extract of hot water and ethanol in DPPH free radical scavenging. It was confirmed that the high antioxidant activity of UE could play an important role in inhibiting the production of proteins related to adipocyte differentiation, such as peroxisome proliferator activated receptor-${\gamma}$ (PPAR-${\gamma}$) and sterol regulatory element binding protein 1 (SREBP1). Conclusions: Ultrasonification at a frequency of 120 kHz at $60^{\circ}C$ should result in better anti-obesity activity than that observed using other processes. It was also observed for the first time that the anti-obesity activity of A. melanocarpa was associated with its antioxidant activity, possibly due to the higher elution of intact cya-gal, owing to efficient low temperature ultrasonification extraction. These results could also be applied to improve other biological activities of medicinal herbs that contain many types of heat-labile bioactive substances.

An Optimization of Aging Time for Low-Temperature Water-Gas Shift Over Cu-Zn-Al Catalyst (저온 수성가스 전이 반응용 Cu-Zn-Al 촉매의 숙성시간 최적화)

  • SHIM, JAE-OH;NA, HYUN-SUK;AHN, SEON-YONG;JANG, WON-JUN;ROH, HYUN-SEOG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.103-110
    • /
    • 2019
  • Cu-Zn-Al catalysts were prepared via co-precipitation method for low-temperature water-gas shift (LT-WGS) reaction under practical reaction condition. Aging time was systematically changed to find optimum point for LT-WGS under practical condition. The Cu-Zn-Al catalyst aged for 72 hours showed the highest CO conversion within low-temperature range as well as very stable catalytic activity for 200 hours despite the practical reaction condition.

N Uptake and Assimilation of Barley Seedlings as Affected by N Availability, Temperature and Water Potential (질소량, 온도, 수분포텐셜 조절에 따른 보리유묘의 질소흡수 및 체내동화)

  • Kim, Sok-Dong;Kwon, Yong-Woong;Soh, Chang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.5
    • /
    • pp.458-465
    • /
    • 1993
  • Water culture experiments were carried out to elucidate the effects of N availability, temperature and water potential of culture solution on the uptake and assimilation of N and dry matter accumulation by barley seedlings. N assimilation and dry matter accumulation at 3 to 4 leaves stage in barley plants were maximized at about 3.4 % of N concentration in leaf. N assimilation by barley plants increased with increase of nitrate concentration up to 80ppm in the solution. Over this level nitrate began to accumulated in the leaves and stems proportionally to the N availability in culture solution. Nitrate reductase activity increased in parallel with the increase in the concentration of reduced N in leaves. N uptake by barley plants decreased markedly when water potential reduced below -2 bar or when temperature dropped below 5$^{\circ}C$. These results suggest that the basal application rate of N, 60kg per hectare, for the barley crop needs to be re-examined under the concept of N use efficiency with taking into consideration of temperature and soil N availability because about a half of N accumulated in the leaves of barley plant before wintering is known to be lost by winter killing of above-ground part of the plant.

  • PDF

Effect of Water Activity and Temperature on Growth, Germination, Sporulation, and Utilization of Carbon Source of Penicillium oxalicum (PENOX) as a Biocontrol Agent(BCA) for control of Clover(Trifolium repens L.) (토끼풀(Trifolium repens L.) 방제용 생물제제 Penicillium oxalicum (PENOX)의 발아, 생장, 포자생성 및 탄소원이용에 미치는 수분활성 및 온도의 영향)

  • Lee, Hyang-Burm;Kim, Chang-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.68-74
    • /
    • 2000
  • Penicillium oxalicum (PENOX) has shown the potential as a biocontrol agent(5CA) for control of a weed, clover(Trifolium repens L.) in grass plots. The bioherbicidal activity may be due to germinative and growth capacities and substrate availability of the agent over a range of environmental factors. The influences of different water activities($0.94{\sim}0.995\;a_w$) and temperatures($18{\sim}30^{\circ}C$) on mycelial growth, conidial germination, sporulation oil 2% MEA(malt extract agar) adjusted to different water activities with glycerol, and carbon source utilization using BIOLOG GN MicroPlate were determined in vitro. Decreases in $a_w$ on MEA caused a reduction in mycelial growth and conidial germination depending on temperature. The mycelial growth of PENOX was greatest at $30^{\circ}C/0.995\;a_w$. At some lowered water activity($0.97\;a_w$), the growth was similar between 25 and $30^{\circ}C$, and considerably decreased at lowered temperature($20^{\circ}C$). The germination rate was also greatest at $30^{\circ}C/0.995\;a_w$. Lag phase times for PENOX at $18^{\circ}C$ on MEA were >6hrs at tile whole $a_w$ level tested, and at 18 and $25^{\circ}C$ they were >18hrs and >12hrs at $0.94\;a_w$, respectively. However, its sporulation was some better at $0.97\;a_w$ than $0.995\;a_w$ or $0.94\;a_w$, and better at $20^{\circ}C$ than $30^{\circ}C$. In contrast, the number of carbon sources(niche size) utilized by PENOX varied with $a_w$ and temperature. Under some water stress condition($0.95\;a_w$), the agent utilized smaller number of carbon sources than $0.995\;a_w$ depending on temperature. The niche size at 0.995 and $0.95\;a_w$ were highest at $25^{\circ}C$, and showed 86 and 65, respectively. At $30^{\circ}C$, the niche size at 0.995 and $0.95\;a_w$ showed 84 and 50, respectively. There was no carbon source utilized by PENOX at $0.90\;a_w$ regardless of temperature. These information of tile fungal ecophysiology will be useful for the effective development of BCA.

  • PDF

Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction (Ce 첨가에 따른 저온수성가스전이반응용 Cu/Zn 촉매의 활성 연구)

  • Byun, Chang Ki;Im, Hyo Bin;Park, Jihye;Baek, Jeonghun;Jeong, Jeongmin;Yoon, Wang Ria;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2015
  • In order to investigate the effect of cerium oxide addition, Cu-ZnO-CeO2 catalysts were prepared using co-precipitation method for water gas shift (WGS) reaction. A series of Cu-ZnO-CeO2 catalyst with fixed Cu Content (50 wt%, calculated as CuO) and a given ceria content (e.g., 0, 5, 10, 20, 30, 40 wt%, calculated as CeO2) were tested for catalytic activity at a GHSV of 95,541 h-1, and a temperature range of 200 to 400 ℃. Cu-ZnO-CeO2 catalysts were characterized by using BET, SEM, XRD, H2-TPR, and XPS analysis. Varying composition of Cu-ZnO-CeO2 catlysts led the difference characteristics such as Cu dispersion, and binding energy. The optimum 10 wt% doping of cerium facilitated catalyst reduction at lower temperature and improved the catalyst performance greatly in terms of CO conversion. Cerium oxide added catalyst showed enhanced activities at higher temperature when it compared with the catalyst without cerium oxide. Consequently, ceria addition of optimal composition leads to enhanced catalytic activity which is attributed to enhanced Cu dispersion, lower binding energy, and hindered Cu metal agglomeration.

Effect of High Water Temperature on the Growth and Lipid Compositions of the Sea Cucumber Apostichopus japonicus (고수온에서의 해삼(Apostichopus japonicus) 성장과 체지방 조성)

  • Jeong, U-Cheol;Md, Anisuzzaman;Jin, Feng;Choi, Jong-Kuk;Han, Jong-Cheol;Choi, Byong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.4
    • /
    • pp.400-407
    • /
    • 2019
  • The optimum growth temperature of sea cucumber is $18^{\circ}C$, above $20^{\circ}C$, the appetite declines and the digestive tract is atrophied. At $25^{\circ}C$ or more, it is known that the digestive tract is degenerated as growth is stopped by minimizing metabolic activity. Because of these physiological and ecological characteristics, the growth period of sea cucumber Apostichopus japonicus is relatively short in the natural environment of Korea where four seasons are clear. Therefore, maintenance of water temperature in sea cucumber culture is very important. This experiment was conducted to investigate the growth and lipid compositions of sea cucumbers at high temperature. Results showed that the growth and survival rates of sea cucumber were not significantly different until $26^{\circ}C$ (P>0.01). The fatty acid compositions of total lipid of sea cucumber tended to increase with saturated fatty acid content and decrease with n-3 fatty acid content at higher water temperature.

Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction (Mg 첨가에 따른 수성가스전이반응용 Cu/ZnO/Al2O3 촉매의 활성 연구)

  • Park, Ji Hye;Baek, Jeong Hun;Hwang, Ra Hyun;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.429-434
    • /
    • 2017
  • To investigate the effect of magnesium oxide addition, $Cu/ZnO/MgO/Al_2O_3$ (CZMA) catalysts were prepared using co-precipitation method with fixed molar ratio of Cu/Zn/Mg/Al as 45/45/5/5 mol% for low-temperature water gas shift reaction. Synthesized catalysts were characterized by using BET, $N_2O$ chemisorption, XRD, $H_2-TPR$ and $NH_3-TPD$ analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of $200{\sim}320^{\circ}C$. At the same condition, magnesium oxide added catalyst (CZMA 400) showed that the lowest reduction temperature and stable presence of $Cu^+$, that is active species and abundant weak acid site. Also magnesium oxide added catalysts (CZMA) showed higher catalytic activity at temperature range above $240^{\circ}C$ than the catalyst without magnesium oxide (CZA). Consequently, CZMA 400 catalyst is considered to be excellent catalyst showing CO conversion of 77.59% without deactivation for about 75 hours at $240^{\circ}C$, GHSV $28,000h^{-1}$.