DOI QR코드

DOI QR Code

An Optimization of Aging Time for Low-Temperature Water-Gas Shift Over Cu-Zn-Al Catalyst

저온 수성가스 전이 반응용 Cu-Zn-Al 촉매의 숙성시간 최적화

  • SHIM, JAE-OH (Department of Environmental Engineering, Yonsei University) ;
  • NA, HYUN-SUK (Department of Environmental Engineering, Yonsei University) ;
  • AHN, SEON-YONG (Department of Environmental Engineering, Yonsei University) ;
  • JANG, WON-JUN (Department of Environment and Energy Engineering, Kyungnam University) ;
  • ROH, HYUN-SEOG (Department of Environmental Engineering, Yonsei University)
  • 심재오 (연세대학교 환경공학부) ;
  • 나현석 (연세대학교 환경공학부) ;
  • 안선용 (연세대학교 환경공학부) ;
  • 장원준 (경남대학교 환경에너지공학과) ;
  • 노현석 (연세대학교 환경공학부)
  • Received : 2019.03.18
  • Accepted : 2019.04.30
  • Published : 2019.04.30

Abstract

Cu-Zn-Al catalysts were prepared via co-precipitation method for low-temperature water-gas shift (LT-WGS) reaction under practical reaction condition. Aging time was systematically changed to find optimum point for LT-WGS under practical condition. The Cu-Zn-Al catalyst aged for 72 hours showed the highest CO conversion within low-temperature range as well as very stable catalytic activity for 200 hours despite the practical reaction condition.

Keywords

SSONB2_2019_v30n2_103_f0001.png 이미지

Fig. 1. XRD patterns of Cu-Zn-Al catalysts with various aging time

SSONB2_2019_v30n2_103_f0002.png 이미지

Fig. 2. TPR patterns of Cu-Zn-Al catalysts with various aging time

SSONB2_2019_v30n2_103_f0003.png 이미지

Fig. 3. CO conversion with reaction temperature over Cu-Zn-Al catalysts with various aging time under practical reaction condition

SSONB2_2019_v30n2_103_f0005.png 이미지

Fig. 5. The summarization of BET surface area, reduction degree, and the reaction results over C8H and C48H catalysts with varying reduction temperature

SSONB2_2019_v30n2_103_f0006.png 이미지

Fig. 6. CO conversion with time on stream over C72H catalyst under practical reaction condition (T=220℃, GHSV=16,000 h-1)

SSONB2_2019_v30n2_103_f0007.png 이미지

Fig. 4. LT-WGS reaction under practical reaction condition using C8H and C48H catalysts with varying reduction temperature

Table 1. Characteristics of Cu-Zn-Al catalysts prepared by different aging time

SSONB2_2019_v30n2_103_t0001.png 이미지

Table 2. Calculated reduction degree of the Cu-Zn-Al cata-lysts with varying aging time

SSONB2_2019_v30n2_103_t0002.png 이미지

References

  1. J. O. Shim, H. S. Na, A. Jha, W. J. Jang, D. W. Jeong, I. W. Nah, B. H. Jeon, and H. S. Roh, "Effect of preparation method on the oxygen vacancy concentration of $CeO_2$-promoted Cu/${\gamma}$-$Al_2O_3$ catalysts for HTS reactions", Chem. Eng. J., Vol. 306, 2016, pp. 908-915, doi: https://doi.org/10.1016/j.cej.2016.08.030.
  2. J. O. Shim, Y. J. Hong, H. S. Na, W. J. Jang, Y. C. Kang, and H. S. Roh, "Highly Active and Stable Pt-Loaded $Ce_{0.75}Zr_{0.25}O_2$ Yolk-Shell Catalyst for Water-Gas Shift Reaction", ACS Appl. Mater. Interfaces, Vol. 8, No. 27, 2016, pp. 17239-17244, doi: https://doi.org/10.1021/acsami.6b03915.
  3. K. W. Jeon, D. W. Jeong, W. J. Jang, J. O. Shim, H. S. Na, H. M. Kim, Y. L. Lee, B. H. Jeon, S. H. Kim, J. W. Bae, and H. S. Roh, "Preferential CO oxidation over supported Pt catalysts", Korean J. Chem. Eng., Vol. 33, No. 6, 2016, pp. 1781-1787, doi: https://doi.org/10.1007/s11814-016-0050-5.
  4. D. W. Jeong, W. J. Jang, J. O. Shim, W. B. Han, H. S. Roh, U. H. Jung, and W. L. Yoon, "Low-temperature water-gas shift reaction over supported Cu catalysts", Renew. Energy, Vol. 65, 2014, pp. 102-107, doi: https://doi.org/10.1016/j.renene.2013.07.035.
  5. D. B. Pal, R. Chand, S. N. Upadhyay, and P. K. Mishra, "Performance of water gas shift reaction catalysts: A review", Renewable and Sustainable Energy Reviews, Vol. 93, 2018, pp. 549-565, doi: https://doi.org/10.1016/j.rser.2018.05.003.
  6. C. Price, L. Pastor-Perez, E. Le Sache, A. Sepulveda-Escribano, and T. Reina, "Highly active Cu-ZnO catalysts for the WGS reaction at medium-high space velocities: Effect of the support composition", Int. J. Hydrogen Energy, Vol. 42, No. 16, 2017, pp. 10747-10751, doi: https://doi.org/10.1016/j.ijhydene.2017.02.013.
  7. M. Goudarzi and M. Salavati-Niasari, "Using pomegranate peel powders as a new capping agent for synthesis of CuO/ZnO/$Al_2O_3$ nanostructures; enhancement of visible light photocatalytic activity", Int. J. Hydrogen Energy, Vol. 43, No. 31, 2018, pp. 14406-14416, doi: http://doi.org/10.1016/j.ijhydene.2018.06.034.
  8. J. Jing, L. Li, W. Chu, Y. Wei, and C. Jiang, "Microwave-assisted synthesis of high performance copper-based catalysts for hydrogen production from methanol decomposition", Int. J. Hydrogen Energy, Vol. 43, No. 27, 2018, pp. 12059-12068, doi: https://doi.org/10.1016/j.ijhydene.2018.04.104.
  9. Y. Mohtashami and M. Taghizadeh, "Performance of the $ZrO_2$ promoted CuZnO catalyst supported on acetic acid-treated MCM-41 in methanol steam reforming", Int. J. Hydrogen Energy, Vol. 44, No. 12, 2019, pp. 5725-5738, doi: https://doi.org/10.1016/j.ijhydene.2019.01.029.
  10. K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Prog. Energy Combust. Sci., Vol. 36, No. 3, 2010, pp. 307-326, doi: https://doi.org/10.1016/j.pecs.2009.11.002.
  11. W. J. Jang, Y. J. Hong, H. M. Kim, J. O. Shim, H. S. Roh, and Y. C. Kang, "Alkali resistant Ni-loaded yolk-shell catalysts for direct internal reforming in molten carbonate fuel cells", J. Power Sources, Vol. 352, 2017, pp. 1-8, doi: https://doi.org/10.1016/j.jpowsour.2017.03.117.
  12. W. J. Jang, Y. S. Jung, J. O. Shim, H. S. Roh, and W. L. Yoon, "Preparation of a Ni-MgO-$Al_2O_3$ catalyst with high activity and resistance to potassium poisoning during direct internal reforming of methane in molten carbonate fuel cells", J. Power Sources, Vol. 378, 2018, pp. 597-602, doi: https://doi.org/10.1016/j.jpowsour.2018.01.012.
  13. H. Kato, K. Asakura, and A. Kudo, "Highly efficient water splitting into $H_2$ and $O_2$ over lanthanum-doped $NaTaO_3$ photocatalysts with high crystallinity and surface nanostructure", J. Am. Chem. Soc., Vol. 125, No. 10, 2003, pp. 3082-3089, doi: https://doi.org/10.1021/ja027751g.
  14. M. Liu, W. You, Z. Lei, G. Zhou, J. Yang, G. Wu, G. Ma, G. Luan, T. Takata, and M. Hara, "Water reduction and oxidation on Pt-Ru/$Y_2Ta_2O_5N_2$ catalyst under visible light irradiation", Chem. Commun., No. 19, 2004, pp. 2192-2193, doi: https://doi.org/10.1039/B407892F.
  15. D. Jing, Y. Zhang, and L. Guo, "Study on the synthesis of Ni doped mesoporous $TiO_2$ and its photocatalytic activity for hydrogen evolution in aqueous methanol solution", Chem. Phys. Lett., Vol. 415, No. 1-3, 2005, pp. 74-78, doi: https://doi.org/10.1016/j.cplett.2005.08.080.
  16. S. H. Lee, S. T. Park, R. Lee, J. H. Hwang, and J. M. Sohn, "Water gas shift reaction in a catalytic bubbling fluidized bed reactor", Korean J. Chem. Eng., Vol. 33, No. 12, 2016, pp. 3523-3528, doi: https://doi.org/10.1007/s11814-016-0208-1.
  17. D. W. Jeong, H. S. Potdar, J. O. Shim, W. J. Jang, and H. S. Roh, "$H_2$ production from a single stage water-gas shift reaction over Pt/$CeO_2$, Pt/$ZrO_2$, and Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ catalysts", Int. J. Hydrogen Energy, Vol. 38, No. 11, 2013, pp. 4502-4507, doi: https://doi.org/10.1016/j.ijhydene.2013.01.200.
  18. D. W. Jeong, V. Subramanian, J. O. Shim, W. J. Jang, Y. C. Seo, H. S. Roh, J. H. Gu, and Y. T. Lim, "High-Temperature Water Gas Shift Reaction Over Fe/Al/Cu Oxide Based Catalysts Using Simulated Waste-Derived Synthesis Gas", Catal. Lett., Vol. 143, No. 5, 2013, pp. 438-444, doi: https://doi.org/10.1007/s10562-013-0981-y.
  19. D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, and H. S. Roh, "A crucial role for the $CeO_2$-$ZrO_2$ support for the low temperature water gas shift reaction over Cu-$CeO_2$-$ZrO_2$ catalysts", Catal. Sci. Technol., Vol. 5, No. 7, 2015, pp. 3706-3713, doi: https://doi.org/10.1039/c5cy00499c.
  20. W. J. Jang, D. W. Jeong, J. O. Shim, H. M. Kim, H. S. Roh, I. H. Son, and S. J. Lee, "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application", Appl. Energy, Vol. 173, 2016, pp. 80-91, doi: https://doi.org/10.1016/j.apenergy.2016.04.006.
  21. W. J. Jang, J. O. Shim, K. W. Jeon, H. S. Na, H. M. Kim, Y. L. Lee, H. S. Roh, and D. W. Jeong, "Design and scale-up of a Cr-free Fe-Al-Cu catalyst for hydrogen production from waste-derived synthesis gas", Appl. Catal. B-Environ., Vol. 249, 2019, pp. 72-81, doi: https://doi.org/10.1016/j.apcatb.2019.02.036.
  22. J. H. Kim, Y. S. Jang, J. C. Kim, and D. H. Kim, "Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol", Korean J. Chem. Eng., Vol. 36, No. 3, 2019, pp. 368-376, doi: https://doi.org/10.1007/s11814-018-0211-9.
  23. H. S. Na, J. O. Shim, W. J. Jang, K. W. Jeon, H. M. Kim, Y. L. Lee, D. W. Lee, S. Y. Yoo, J. W. Bae, C. V. Rode, and H. S. Roh, "The effect of titration time on the catalytic performance of Cu/$CeO_2$ catalysts for water-gas shift reaction", Catal. Today, Vol. 309, 2018, pp. 83-88, doi: https://doi.org/10.1016/j.cattod.2017.10.007.
  24. H. S. Na, J. O. Shim, S. Y. Ahn, W. J. Jang, K. W. Jeon, H. M. Kim, Y. L. Lee, K. J. Kim, and H. S. Roh, "Effect of precipitation sequence on physicochemical properties of $CeO_2$ support for hydrogen production from low-temperature water-gas shift reaction", Int. J. Hydrogen Energy, Vol. 43, No. 37, 2018, pp. 17718-17725, doi: https://doi.org/10.1016/j.ijhydene.2018.08.009.
  25. Y. L. Lee, A. Jha, W. J. Jang, J. O. Shim, C. V. Rode, B. H. Jeon, J. W. Bae, and H. S. Roh, "Effect of alkali and alkaline earth metal on Co/$CeO_2$ catalyst for the water-gas shift reaction of waste derived synthesis gas", Appl. Catal. A-Gen., Vol. 551, 2018, pp. 63-70, doi: https://doi.org/10.1016/j.apcata.2017.12.009.
  26. P. Kowalik, K. Antoniak-Jurak, R. Bicki, W. Prochniak, P. Wiercioch, and K. Michalska, "The alcohol-modified CuZnAl hydroxycarbonate synthesis as a convenient preparation route of high activity Cu/ZnO/$Al_2O_3$ catalysts for WGS", Int. J. Hydrogen Energy, Vol. 44, No. 2, 2019, pp. 913-922, doi: https://doi.org/10.1016/j.ijhydene.2018.11.051.
  27. G. Wang, D. Mao, X. Guo, and J. Yu, "Methanol synthesis from $CO_2$ hydrogenation over CuO-ZnO-$ZrO_2$-$M_xO_y$ catalysts (M= Cr, Mo and W)", Int. J. Hydrogen Energy, Vol. 44, No. 8, 2019, pp. 4197-4207, doi: https://doi.org/10.1016/j.ijhydene.2018.12.131.
  28. H. Ajamein, M. Haghighi, S. Minaei, S. Alaei, "Texture/phase evolution during microwave fabrication of nanocrystalline multicomponent (Cu/Zn/Al)O metal oxides with varying diethylene glycol content applied in hydrogen production", Int. J. Hydrogen Energy, Vol. 43, No. 51, 2018, pp. 22838-22851, doi: https://doi.org/10.1016/j.ijhydene.2018.10.174.
  29. C. Jeong, J. Park, J. Kim, J. H. Baik, and Y. W. Suh, "Effects of $Al^{3+}$ precipitation onto primitive amorphous Cu-Zn precipitate on methanol synthesis over Cu/ZnO/$Al_2O_3$ catalyst", Korean J. Chem. Eng., Vol. 36, No. 2, 2019, pp. 191-196, doi: https://doi.org/10.1007/s11814-018-0186-6.
  30. E. G. Choi, K. H. Song, S. R. An, K. Y. Lee, M. H. Youn, K. T. Park, S. K. Jeong, and H. J. Kim, "Cu/ZnO/AlOOH catalyst for methanol synthesis through $CO_2$ hydrogenation", Korean J. Chem. Eng., Vol. 35, No. 1, 2018, pp. 73-81, doi: https://doi.org/10.1007/s11814-017-0230-y.
  31. J. L. Li and T. Inui, "Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures", Appl. Catal. A-Gen., Vol. 137, No. 1, 1996, pp. 105-117, doi: https://doi.org/10.1016/0926-860X(95)00284-7.
  32. C. Baltes, S. Vukojevic, and F. Schuth, "Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/$Al_2O_3$ catalysts for methanol synthesis", J. Catal., Vol. 258, No. 2, 2008, pp. 334-344, doi: https://doi.org/10.1016/j.jcat.2008.07.004.
  33. H. Jung, D. R. Yang, O. S. Joo, and K. D. Jung, "The Importance of the Aging Time to Prepare Cu/ZnO/$Al_2O_3$ Catalyst with High Surface Area in Methanol Synthesis", Bull. Korean Chem. Soc., Vol. 31, No. 5, 2010, pp. 1241-1246, doi: https://doi.org/10.5012/bkcs.2010.31.5.1241.
  34. P. Kowalik, W. Prochniak, and T. Borowiecki, "The effect of alkali metals doping on properties of Cu/ZnO/$Al_2O_3$ catalyst for water gas shift", Catal. Today, Vol. 176, No. 1, 2011, pp. 144-148, doi: https://doi.org/10.1016/j.cattod.2011.01.028.
  35. A. A. G. Lima, M. Nele, E. L. Moreno, and H. M. C. Andrade, "Composition effects on the activity of Cu-ZnO-$Al_2O_3$ based catalysts for the water gas shift reaction: A statistical approach", Appl. Catal. A-Gen., Vol. 171, No. 1, 1998, pp. 31-43, doi: https://doi.org/10.1016/S0926-860X(98)00072-6.
  36. A. Budiman, M. Ridwan, S. M. Kim, J. W. Choi, C. W. Yoon, J. M. Ha, D. J. Suh, and Y. W. Suh, "Design and preparation of high-surface-area Cu/ZnO/$Al_2O_3$ catalysts using a modified co-precipitation method for the water-gas shift reaction", Appl. Catal. A-Gen., Vol. 462-463, 2013, pp. 220-226, doi: https://doi.org/10.1016/j.apcata.2013.05.010.
  37. J. O. Shim, K. W. Jeon, W. J. Jang, H. S. Na, J. W. Cho, H. M. Kim, Y. L. Lee, D. W. Jeong, H. S. Roh, and C. H. Ko, "Facile production of biofuel via solvent-free deoxygenation of oleic acid using a CoMo catalyst", Appl. Catal. B-Environ., Vol. 239, 2018, pp. 644-653, doi: https://doi.org/10.1016/j.apcatb.2018.08.057.
  38. W. J. Jang, H. M. Kim, J. O. Shim, S. Y. Yoo, K. W. Jeon, H. S. Na, Y. L. Lee, D. W. Jeong, J. W. Bae, and I. W. Nah, "Key properties of Ni-MgO-CeO 2, Ni-MgO-$ZrO_2$, and Ni-MgO-$Ce_{(1-x)}Zr_{(x)}O_2$ catalysts for the reforming of methane with carbon dioxide", Green Chem., Vol. 20, No. 7, 2018, pp. 1621-1633, doi: https://doi.org/10.1039/C7GC03605A.
  39. J. O. Shim, W. J. Jang, K. W. Jeon, D. W. Lee, H. S. Na, H. M. Kim, Y. L. Lee, S. Y. Yoo, B. H. Jeon, and H. S. Roh, "Petroleum like biodiesel production by catalytic decarboxylation of oleic acid over Pd/Ce-$ZrO_2$ under solvent-free condition", Appl. Catal. A-Gen., Vol. 563, 2018, pp. 163-169, doi: https://doi.org/10.1016/j.apcata.2018.07.005.
  40. J. O. Shim, D. W. Jeong, W. J. Jang, K. W. Jeon, S. H. Kim, B. H. Jeon, H. S. Roh, J. G. Na, Y. K. Oh, S. S. Han, and C. H. Ko, "Optimization of unsupported CoMo catalysts for decarboxylation of oleic acid", Catal. Commun., Vol. 67, 2015, pp. 16-20, doi: https://doi.org/10.1016/j.catcom.2015.03.034.
  41. D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, H. S. Roh, U. H. Jung, and W. L. Yoon, "Hydrogen production from low temperature WGS reaction on co-precipitated Cu-$CeO_2$ catalysts: An optimization of Cu loading", Int. J. Hydrogen Energy, Vol. 39, No. 17, 2014, pp. 9135-9142, doi: https://doi.org/10.1016/j.ijhydene.2014.04.005.
  42. J. O. Shim, D. W. Jeong, W. J. Jang, K. W. Jeon, B. H. Jeon, S. Y. Cho, H. S. Roh, J. G. Na, C. H. Ko, Y. K. Oh, and S. S. Han, "Deoxygenation of oleic acid over $Ce_{(1-x)}Zr_{(x)}O_2$ catalysts in hydrogen environment", Renew. Energy, Vol. 65, 2014, pp. 36-40, doi: https://doi.org/10.1016/j.renene.2013.07.008.
  43. S. A. Kondrat, P. J. Smith, L. Lu, J. K. Bartley, S. H. Taylor, M. S. Spencer, G. J. Kelly, C. W. Park, C. J. Kiely, and G. J. Hutchings, "Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical $CO_2$ anti-solvent precipitation", Catal. Today, Vol. 317, 2018, pp. 12-20, doi: https://doi.org/10.1016/j.cattod.2018.03.046.
  44. W. Fu, Z. Bao, W. Ding, K. Chou, and Q. Li, "The synergistic effect of the structural precursors of Cu/ZnO/$Al_2O_3$ catalysts for water-gas shift reaction", Catal. Commun., Vol. 12, No. 6, 2011, pp. 505-509, doi: https://doi.org/10.1016/j.catcom.2010.11.017.