Browse > Article
http://dx.doi.org/10.7316/KHNES.2019.30.2.103

An Optimization of Aging Time for Low-Temperature Water-Gas Shift Over Cu-Zn-Al Catalyst  

SHIM, JAE-OH (Department of Environmental Engineering, Yonsei University)
NA, HYUN-SUK (Department of Environmental Engineering, Yonsei University)
AHN, SEON-YONG (Department of Environmental Engineering, Yonsei University)
JANG, WON-JUN (Department of Environment and Energy Engineering, Kyungnam University)
ROH, HYUN-SEOG (Department of Environmental Engineering, Yonsei University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.30, no.2, 2019 , pp. 103-110 More about this Journal
Abstract
Cu-Zn-Al catalysts were prepared via co-precipitation method for low-temperature water-gas shift (LT-WGS) reaction under practical reaction condition. Aging time was systematically changed to find optimum point for LT-WGS under practical condition. The Cu-Zn-Al catalyst aged for 72 hours showed the highest CO conversion within low-temperature range as well as very stable catalytic activity for 200 hours despite the practical reaction condition.
Keywords
Cu-Zn-Al; LT-WGS; Aging time;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. O. Shim, H. S. Na, A. Jha, W. J. Jang, D. W. Jeong, I. W. Nah, B. H. Jeon, and H. S. Roh, "Effect of preparation method on the oxygen vacancy concentration of $CeO_2$-promoted Cu/${\gamma}$-$Al_2O_3$ catalysts for HTS reactions", Chem. Eng. J., Vol. 306, 2016, pp. 908-915, doi: https://doi.org/10.1016/j.cej.2016.08.030.   DOI
2 J. O. Shim, Y. J. Hong, H. S. Na, W. J. Jang, Y. C. Kang, and H. S. Roh, "Highly Active and Stable Pt-Loaded $Ce_{0.75}Zr_{0.25}O_2$ Yolk-Shell Catalyst for Water-Gas Shift Reaction", ACS Appl. Mater. Interfaces, Vol. 8, No. 27, 2016, pp. 17239-17244, doi: https://doi.org/10.1021/acsami.6b03915.   DOI
3 K. W. Jeon, D. W. Jeong, W. J. Jang, J. O. Shim, H. S. Na, H. M. Kim, Y. L. Lee, B. H. Jeon, S. H. Kim, J. W. Bae, and H. S. Roh, "Preferential CO oxidation over supported Pt catalysts", Korean J. Chem. Eng., Vol. 33, No. 6, 2016, pp. 1781-1787, doi: https://doi.org/10.1007/s11814-016-0050-5.   DOI
4 D. W. Jeong, W. J. Jang, J. O. Shim, W. B. Han, H. S. Roh, U. H. Jung, and W. L. Yoon, "Low-temperature water-gas shift reaction over supported Cu catalysts", Renew. Energy, Vol. 65, 2014, pp. 102-107, doi: https://doi.org/10.1016/j.renene.2013.07.035.   DOI
5 D. B. Pal, R. Chand, S. N. Upadhyay, and P. K. Mishra, "Performance of water gas shift reaction catalysts: A review", Renewable and Sustainable Energy Reviews, Vol. 93, 2018, pp. 549-565, doi: https://doi.org/10.1016/j.rser.2018.05.003.   DOI
6 C. Price, L. Pastor-Perez, E. Le Sache, A. Sepulveda-Escribano, and T. Reina, "Highly active Cu-ZnO catalysts for the WGS reaction at medium-high space velocities: Effect of the support composition", Int. J. Hydrogen Energy, Vol. 42, No. 16, 2017, pp. 10747-10751, doi: https://doi.org/10.1016/j.ijhydene.2017.02.013.   DOI
7 M. Goudarzi and M. Salavati-Niasari, "Using pomegranate peel powders as a new capping agent for synthesis of CuO/ZnO/$Al_2O_3$ nanostructures; enhancement of visible light photocatalytic activity", Int. J. Hydrogen Energy, Vol. 43, No. 31, 2018, pp. 14406-14416, doi: http://doi.org/10.1016/j.ijhydene.2018.06.034.   DOI
8 K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Prog. Energy Combust. Sci., Vol. 36, No. 3, 2010, pp. 307-326, doi: https://doi.org/10.1016/j.pecs.2009.11.002.   DOI
9 J. Jing, L. Li, W. Chu, Y. Wei, and C. Jiang, "Microwave-assisted synthesis of high performance copper-based catalysts for hydrogen production from methanol decomposition", Int. J. Hydrogen Energy, Vol. 43, No. 27, 2018, pp. 12059-12068, doi: https://doi.org/10.1016/j.ijhydene.2018.04.104.   DOI
10 Y. Mohtashami and M. Taghizadeh, "Performance of the $ZrO_2$ promoted CuZnO catalyst supported on acetic acid-treated MCM-41 in methanol steam reforming", Int. J. Hydrogen Energy, Vol. 44, No. 12, 2019, pp. 5725-5738, doi: https://doi.org/10.1016/j.ijhydene.2019.01.029.   DOI
11 W. J. Jang, Y. J. Hong, H. M. Kim, J. O. Shim, H. S. Roh, and Y. C. Kang, "Alkali resistant Ni-loaded yolk-shell catalysts for direct internal reforming in molten carbonate fuel cells", J. Power Sources, Vol. 352, 2017, pp. 1-8, doi: https://doi.org/10.1016/j.jpowsour.2017.03.117.   DOI
12 W. J. Jang, Y. S. Jung, J. O. Shim, H. S. Roh, and W. L. Yoon, "Preparation of a Ni-MgO-$Al_2O_3$ catalyst with high activity and resistance to potassium poisoning during direct internal reforming of methane in molten carbonate fuel cells", J. Power Sources, Vol. 378, 2018, pp. 597-602, doi: https://doi.org/10.1016/j.jpowsour.2018.01.012.   DOI
13 H. Kato, K. Asakura, and A. Kudo, "Highly efficient water splitting into $H_2$ and $O_2$ over lanthanum-doped $NaTaO_3$ photocatalysts with high crystallinity and surface nanostructure", J. Am. Chem. Soc., Vol. 125, No. 10, 2003, pp. 3082-3089, doi: https://doi.org/10.1021/ja027751g.   DOI
14 W. J. Jang, D. W. Jeong, J. O. Shim, H. M. Kim, H. S. Roh, I. H. Son, and S. J. Lee, "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application", Appl. Energy, Vol. 173, 2016, pp. 80-91, doi: https://doi.org/10.1016/j.apenergy.2016.04.006.   DOI
15 M. Liu, W. You, Z. Lei, G. Zhou, J. Yang, G. Wu, G. Ma, G. Luan, T. Takata, and M. Hara, "Water reduction and oxidation on Pt-Ru/$Y_2Ta_2O_5N_2$ catalyst under visible light irradiation", Chem. Commun., No. 19, 2004, pp. 2192-2193, doi: https://doi.org/10.1039/B407892F.   DOI
16 D. Jing, Y. Zhang, and L. Guo, "Study on the synthesis of Ni doped mesoporous $TiO_2$ and its photocatalytic activity for hydrogen evolution in aqueous methanol solution", Chem. Phys. Lett., Vol. 415, No. 1-3, 2005, pp. 74-78, doi: https://doi.org/10.1016/j.cplett.2005.08.080.   DOI
17 S. H. Lee, S. T. Park, R. Lee, J. H. Hwang, and J. M. Sohn, "Water gas shift reaction in a catalytic bubbling fluidized bed reactor", Korean J. Chem. Eng., Vol. 33, No. 12, 2016, pp. 3523-3528, doi: https://doi.org/10.1007/s11814-016-0208-1.   DOI
18 D. W. Jeong, H. S. Potdar, J. O. Shim, W. J. Jang, and H. S. Roh, "$H_2$ production from a single stage water-gas shift reaction over Pt/$CeO_2$, Pt/$ZrO_2$, and Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ catalysts", Int. J. Hydrogen Energy, Vol. 38, No. 11, 2013, pp. 4502-4507, doi: https://doi.org/10.1016/j.ijhydene.2013.01.200.   DOI
19 D. W. Jeong, V. Subramanian, J. O. Shim, W. J. Jang, Y. C. Seo, H. S. Roh, J. H. Gu, and Y. T. Lim, "High-Temperature Water Gas Shift Reaction Over Fe/Al/Cu Oxide Based Catalysts Using Simulated Waste-Derived Synthesis Gas", Catal. Lett., Vol. 143, No. 5, 2013, pp. 438-444, doi: https://doi.org/10.1007/s10562-013-0981-y.   DOI
20 D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, and H. S. Roh, "A crucial role for the $CeO_2$-$ZrO_2$ support for the low temperature water gas shift reaction over Cu-$CeO_2$-$ZrO_2$ catalysts", Catal. Sci. Technol., Vol. 5, No. 7, 2015, pp. 3706-3713, doi: https://doi.org/10.1039/c5cy00499c.   DOI
21 W. J. Jang, J. O. Shim, K. W. Jeon, H. S. Na, H. M. Kim, Y. L. Lee, H. S. Roh, and D. W. Jeong, "Design and scale-up of a Cr-free Fe-Al-Cu catalyst for hydrogen production from waste-derived synthesis gas", Appl. Catal. B-Environ., Vol. 249, 2019, pp. 72-81, doi: https://doi.org/10.1016/j.apcatb.2019.02.036.   DOI
22 J. H. Kim, Y. S. Jang, J. C. Kim, and D. H. Kim, "Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol", Korean J. Chem. Eng., Vol. 36, No. 3, 2019, pp. 368-376, doi: https://doi.org/10.1007/s11814-018-0211-9.   DOI
23 H. Ajamein, M. Haghighi, S. Minaei, S. Alaei, "Texture/phase evolution during microwave fabrication of nanocrystalline multicomponent (Cu/Zn/Al)O metal oxides with varying diethylene glycol content applied in hydrogen production", Int. J. Hydrogen Energy, Vol. 43, No. 51, 2018, pp. 22838-22851, doi: https://doi.org/10.1016/j.ijhydene.2018.10.174.   DOI
24 H. S. Na, J. O. Shim, W. J. Jang, K. W. Jeon, H. M. Kim, Y. L. Lee, D. W. Lee, S. Y. Yoo, J. W. Bae, C. V. Rode, and H. S. Roh, "The effect of titration time on the catalytic performance of Cu/$CeO_2$ catalysts for water-gas shift reaction", Catal. Today, Vol. 309, 2018, pp. 83-88, doi: https://doi.org/10.1016/j.cattod.2017.10.007.   DOI
25 H. S. Na, J. O. Shim, S. Y. Ahn, W. J. Jang, K. W. Jeon, H. M. Kim, Y. L. Lee, K. J. Kim, and H. S. Roh, "Effect of precipitation sequence on physicochemical properties of $CeO_2$ support for hydrogen production from low-temperature water-gas shift reaction", Int. J. Hydrogen Energy, Vol. 43, No. 37, 2018, pp. 17718-17725, doi: https://doi.org/10.1016/j.ijhydene.2018.08.009.   DOI
26 Y. L. Lee, A. Jha, W. J. Jang, J. O. Shim, C. V. Rode, B. H. Jeon, J. W. Bae, and H. S. Roh, "Effect of alkali and alkaline earth metal on Co/$CeO_2$ catalyst for the water-gas shift reaction of waste derived synthesis gas", Appl. Catal. A-Gen., Vol. 551, 2018, pp. 63-70, doi: https://doi.org/10.1016/j.apcata.2017.12.009.   DOI
27 P. Kowalik, K. Antoniak-Jurak, R. Bicki, W. Prochniak, P. Wiercioch, and K. Michalska, "The alcohol-modified CuZnAl hydroxycarbonate synthesis as a convenient preparation route of high activity Cu/ZnO/$Al_2O_3$ catalysts for WGS", Int. J. Hydrogen Energy, Vol. 44, No. 2, 2019, pp. 913-922, doi: https://doi.org/10.1016/j.ijhydene.2018.11.051.   DOI
28 G. Wang, D. Mao, X. Guo, and J. Yu, "Methanol synthesis from $CO_2$ hydrogenation over CuO-ZnO-$ZrO_2$-$M_xO_y$ catalysts (M= Cr, Mo and W)", Int. J. Hydrogen Energy, Vol. 44, No. 8, 2019, pp. 4197-4207, doi: https://doi.org/10.1016/j.ijhydene.2018.12.131.   DOI
29 E. G. Choi, K. H. Song, S. R. An, K. Y. Lee, M. H. Youn, K. T. Park, S. K. Jeong, and H. J. Kim, "Cu/ZnO/AlOOH catalyst for methanol synthesis through $CO_2$ hydrogenation", Korean J. Chem. Eng., Vol. 35, No. 1, 2018, pp. 73-81, doi: https://doi.org/10.1007/s11814-017-0230-y.   DOI
30 C. Jeong, J. Park, J. Kim, J. H. Baik, and Y. W. Suh, "Effects of $Al^{3+}$ precipitation onto primitive amorphous Cu-Zn precipitate on methanol synthesis over Cu/ZnO/$Al_2O_3$ catalyst", Korean J. Chem. Eng., Vol. 36, No. 2, 2019, pp. 191-196, doi: https://doi.org/10.1007/s11814-018-0186-6.   DOI
31 P. Kowalik, W. Prochniak, and T. Borowiecki, "The effect of alkali metals doping on properties of Cu/ZnO/$Al_2O_3$ catalyst for water gas shift", Catal. Today, Vol. 176, No. 1, 2011, pp. 144-148, doi: https://doi.org/10.1016/j.cattod.2011.01.028.   DOI
32 J. L. Li and T. Inui, "Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures", Appl. Catal. A-Gen., Vol. 137, No. 1, 1996, pp. 105-117, doi: https://doi.org/10.1016/0926-860X(95)00284-7.   DOI
33 C. Baltes, S. Vukojevic, and F. Schuth, "Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/$Al_2O_3$ catalysts for methanol synthesis", J. Catal., Vol. 258, No. 2, 2008, pp. 334-344, doi: https://doi.org/10.1016/j.jcat.2008.07.004.   DOI
34 H. Jung, D. R. Yang, O. S. Joo, and K. D. Jung, "The Importance of the Aging Time to Prepare Cu/ZnO/$Al_2O_3$ Catalyst with High Surface Area in Methanol Synthesis", Bull. Korean Chem. Soc., Vol. 31, No. 5, 2010, pp. 1241-1246, doi: https://doi.org/10.5012/bkcs.2010.31.5.1241.   DOI
35 A. A. G. Lima, M. Nele, E. L. Moreno, and H. M. C. Andrade, "Composition effects on the activity of Cu-ZnO-$Al_2O_3$ based catalysts for the water gas shift reaction: A statistical approach", Appl. Catal. A-Gen., Vol. 171, No. 1, 1998, pp. 31-43, doi: https://doi.org/10.1016/S0926-860X(98)00072-6.   DOI
36 J. O. Shim, D. W. Jeong, W. J. Jang, K. W. Jeon, S. H. Kim, B. H. Jeon, H. S. Roh, J. G. Na, Y. K. Oh, S. S. Han, and C. H. Ko, "Optimization of unsupported CoMo catalysts for decarboxylation of oleic acid", Catal. Commun., Vol. 67, 2015, pp. 16-20, doi: https://doi.org/10.1016/j.catcom.2015.03.034.   DOI
37 A. Budiman, M. Ridwan, S. M. Kim, J. W. Choi, C. W. Yoon, J. M. Ha, D. J. Suh, and Y. W. Suh, "Design and preparation of high-surface-area Cu/ZnO/$Al_2O_3$ catalysts using a modified co-precipitation method for the water-gas shift reaction", Appl. Catal. A-Gen., Vol. 462-463, 2013, pp. 220-226, doi: https://doi.org/10.1016/j.apcata.2013.05.010.   DOI
38 J. O. Shim, K. W. Jeon, W. J. Jang, H. S. Na, J. W. Cho, H. M. Kim, Y. L. Lee, D. W. Jeong, H. S. Roh, and C. H. Ko, "Facile production of biofuel via solvent-free deoxygenation of oleic acid using a CoMo catalyst", Appl. Catal. B-Environ., Vol. 239, 2018, pp. 644-653, doi: https://doi.org/10.1016/j.apcatb.2018.08.057.   DOI
39 W. J. Jang, H. M. Kim, J. O. Shim, S. Y. Yoo, K. W. Jeon, H. S. Na, Y. L. Lee, D. W. Jeong, J. W. Bae, and I. W. Nah, "Key properties of Ni-MgO-CeO 2, Ni-MgO-$ZrO_2$, and Ni-MgO-$Ce_{(1-x)}Zr_{(x)}O_2$ catalysts for the reforming of methane with carbon dioxide", Green Chem., Vol. 20, No. 7, 2018, pp. 1621-1633, doi: https://doi.org/10.1039/C7GC03605A.   DOI
40 J. O. Shim, W. J. Jang, K. W. Jeon, D. W. Lee, H. S. Na, H. M. Kim, Y. L. Lee, S. Y. Yoo, B. H. Jeon, and H. S. Roh, "Petroleum like biodiesel production by catalytic decarboxylation of oleic acid over Pd/Ce-$ZrO_2$ under solvent-free condition", Appl. Catal. A-Gen., Vol. 563, 2018, pp. 163-169, doi: https://doi.org/10.1016/j.apcata.2018.07.005.   DOI
41 D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, H. S. Roh, U. H. Jung, and W. L. Yoon, "Hydrogen production from low temperature WGS reaction on co-precipitated Cu-$CeO_2$ catalysts: An optimization of Cu loading", Int. J. Hydrogen Energy, Vol. 39, No. 17, 2014, pp. 9135-9142, doi: https://doi.org/10.1016/j.ijhydene.2014.04.005.   DOI
42 W. Fu, Z. Bao, W. Ding, K. Chou, and Q. Li, "The synergistic effect of the structural precursors of Cu/ZnO/$Al_2O_3$ catalysts for water-gas shift reaction", Catal. Commun., Vol. 12, No. 6, 2011, pp. 505-509, doi: https://doi.org/10.1016/j.catcom.2010.11.017.   DOI
43 J. O. Shim, D. W. Jeong, W. J. Jang, K. W. Jeon, B. H. Jeon, S. Y. Cho, H. S. Roh, J. G. Na, C. H. Ko, Y. K. Oh, and S. S. Han, "Deoxygenation of oleic acid over $Ce_{(1-x)}Zr_{(x)}O_2$ catalysts in hydrogen environment", Renew. Energy, Vol. 65, 2014, pp. 36-40, doi: https://doi.org/10.1016/j.renene.2013.07.008.   DOI
44 S. A. Kondrat, P. J. Smith, L. Lu, J. K. Bartley, S. H. Taylor, M. S. Spencer, G. J. Kelly, C. W. Park, C. J. Kiely, and G. J. Hutchings, "Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical $CO_2$ anti-solvent precipitation", Catal. Today, Vol. 317, 2018, pp. 12-20, doi: https://doi.org/10.1016/j.cattod.2018.03.046.   DOI