• Title/Summary/Keyword: waste heat recovery

Search Result 245, Processing Time 0.03 seconds

A study on the steam boiler with high compression waste heat recovery system (고압축 폐열회수장치를 구비한 증기보일러에 관한 연구)

  • HAN, Kyu-il;CHO, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.302-307
    • /
    • 2017
  • An electric steam boiler equipped with a condensate recovery system, which stores the condensate generated after using steam in steam washers, steam cookers, steam irons, and steam cleaners in a condensate tank and supplies compressed air to the condensate tank so that the condensate is recovered to the boiler by the pressure of the compressed air, was studied. In the results of this study, the heat energy balance between the quantity of the heat generated by the non-metallic surface heating element and the quantity of the heat absorbed by the water was good in a range of ${\pm}5%$. In addition, the heat transfer rate increased in proportion to the electric power of the surface heating element heater, the waste heat energy was normally recovered by the recovery of the condensate of the steam boiler equipped with the high compression waste heat recovery system, and the recovery rate of the waste heat exhibited 23%.

Study on the Heat Recovery Design Methods for the Flue Gas from Combustion and Incineration Processes (연소 또는 소각 과정에서 발생하는 배기가스의 폐열 회수 설계 방법에 관한 연구)

  • Lee, Chan;Jung, Bong-Jin
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.53-61
    • /
    • 1999
  • Presented is the design method of the waste heat recovery facility for the flue gas produced from combustion and incineration processes of large industrial environmental waste treatment and cogeneration plants. The present study assumes the basic design concept of wast heat recovery facility as the combination of waste heat recovery boiler and steam power cycle, and then describes the modeling technique, the design concept and criteria of each component of waste heat recovery facility. In addition, the present study investigates how the thermal performance of waste heat recovery facility varies with boiler operating pressure and waste heat recovery heat exchanger design at the same flue gas condition.

  • PDF

Research on Performance of Large Rotor-type Heat Recovery Exchanger using CFD Analysis on Surface Corrugation (요철형상의 CFD 해석을 통한 대용량 로타형 폐열회수열교환기 성능에 관한 연구)

  • Kim, Dong-Gyu;Ha, Byeong-Yong;Kim, Kun-Oh;Kum, Jong-Soo;Jeong, Seok-Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.875-880
    • /
    • 2012
  • The field of the large volume heat exchanger for wasted heat recovery ventilation system is being expanded enormously seeing as the fact that the quantity of reducing energies are huge due to the large volume heat exchanger for wasted heat recovery system at large buildings and factories, which consume large amount of energies while it has been arising huge amount of losses in Korea because of the lack of technology. To develop large volume waste heat recovery heat exchanger, rotor type heat exchanger was simulated for the surface corrugation. Based on the simulation results produced $30,000m^3/h$ grade waste heat recovery, heat exchanger was performed for the actual experiment. In addition, performance tests exceed the capacity of a large waste heat recovery heat exchanger performance test methods proposed.

Effect of Waste Heat Recovery Condensing Boiler with Condensed Water Recirculation Function (응축수 순환이 폐열회수 응축형 보일러 성능에 미치는 영향)

  • Keum, Kuk Bin;Kim, Sooik;Yu, Byeong-Hun;Lee, Chang Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.201-204
    • /
    • 2015
  • Recently, energy excessive consumption and environmental pollution are the social issued. The most efficient way to solve both energy excessive consumption and environmental pollution is existing combustion system improved. This study was part of the assume and commercial used existing waste heat recovery condensing boiler to low emission performance for exhaust gas recirculation(EGR) and thermal efficiency rise by applying the condensed water recirculation(CWR) conducted. The researchers applied the EGR and CWR develop a new concept for the condensed water recirculation waste heat recovery condensing boiler. Waste heat recovery condensing boiler applied to the condensed water recirculation thermal efficiency of the same conditions was increased by about 4.8~5.5% and pollution emission also decreased.

  • PDF

Performance Test of Low Temperature Waste Heat Recovery Heat Exchanger Using Self-excited Oscillating Heat Pipe (자려 진동형 히트 파이프를 이용한 저온 폐열 회수 열교환기의 성능 실험)

  • 이욱현;이종현;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.853-859
    • /
    • 2000
  • In this study, low temperature waste heat recovery heat exchanger was developed using a principle of self-excited oscillating heat pipe. The heat exchanger of serpentine type was composed of extruded flat aluminum tube with 6 channels (3 nm$\times$ 2.75nm) and louvered fin. The heat transfer area density of heat exchanger was $331.9 m^2/m^3$. Working fluid is R141b and charge ratio was 40% by volume. Heat transfer rate and the effectiveness of heat exchanger was primary concern of this study. As a result, the effectiveness of heat exchanger was about 0.4-0.67, and recovered waste heat rate was about 4.5 kW per one unit of heat exchanger.

  • PDF

Study on Heat Recovery System using Waste Biomass (폐 바이오매스를 이용한 폐열 회수 열교환기에 관한 연구)

  • 이충구;이세균;이계복;이석호;김정현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.514-521
    • /
    • 2004
  • Waste heat recovery system was studied numerically and experimentally. Heat exchanger system was designed specially to obtain the optimum heat exchanging performance. Brushwood biomass was used for the present experimental study. Two biomass heat recovery systems were designed and developed. Polyethylene helical pipe line of 0.03 m (inner diameter) was installed to recover the heat of biomass dump. The fermentation process of biomass dump was maintained for 12 weeks. The inner average temperature of biomass was about 51$^{\circ}C$ for both hot exchanger systems. The current heat recovery system could recover up to 6 ㎉/kg of energy.

An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles (자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.

A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant (화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석)

  • Jeong, Jinhee;Im, Seokyeon;Kim, Beomjoo;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.

Thermal and Flow Analysis of Organic Rankine Cycle System Pipe Line for 250 kW Grade Waste Gas Heat Recovery (250kW급 폐열회수 시스템용 유기랭킨사이클 배관 열유동해석에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Seo, In Ho;Lee, Sang Yun;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.26-33
    • /
    • 2019
  • This study is a thermal and flow analysis of Organic Rankine Cycle (ORC) pipe line for 250 kW grade waste gas heat recovery. We attempted to obtain the boundary condition data through the process design of the ORC, which can produce an electric power of 250 kW through the recovery of waste heat. Then, we conducted a simulation by using STAR-CCM+ to verify the model for the pipe line stream of the 250 kW class waste heat recovery system. Based on the results of the thermal and flow analyses of each pipe line applied to the ORC system, we gained the following conclusion. The pressure was relatively increased at the pipe outside the refracted part due to the pipe shape. Moreover, the heat transfer amount of the refrigerant gas line is relatively higher than that of the liquid line.