• Title/Summary/Keyword: warping torsion

Search Result 56, Processing Time 0.028 seconds

The Torsion Analysis of a Cylindrical Bar with the Cross-Section Bounded by Circles (단면이 원형경계를 갖는 실린더 축의 비틀림 해석)

  • 김윤영;오경민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2322-2330
    • /
    • 1994
  • The torsion problem in a cylindrical rod is usually formulated in terms of either the warping function or the Prandtl stress function. In a rod whose cross-section is bounded by circles and rectangles, we develop an analytic solution approach based on the warping function, which satisfies Laplace's equation. The present formulation employs polynomials and The Fourier series-type solutions, both of which satisfy exactly the governing differential equation. Using the present method, the maximum shear stress and torsional rigidity are efficiently and accurately calculated and the present results are compared with those by other methods. The specific numerical examples include the case with eccentric holes which was investigated earlier. The finite element results are also compared with the present results.

DEVELOPMENT OF A REFINED STRUCTURAL MODEL FOR COMPOSITE BLADES WITH ARBITRARY SECTION SHAPES (임의의 단면 형상을 갖는 복합재료 블레이드의 첨단 구조해석 모델 개발)

  • Jung, Sung-Nam;Inderjit Chopra
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.215-218
    • /
    • 1999
  • A general structural model, which is an extension of the Vlassov theory, is developed for the analysis of composite rotor blades with elastic couplings. A comprehensive analysis applicable to both thick-and thin-walled composite beams, which can have either open- or closed profile is formulated. The theory accounts for the effects of elastic couplings, shell wall thickness, and transverse shear deformations. A semi-complementary energy functional is used to account for the shear stress distribution in the shell wall. The bending and torsion related warpings and the shear correction factors are obtained in closed form as part of the analysis. The resulting first order shear deformation theory describes the beam kinematics in terms of the axial, flap and lag bending, flap and lag shear, torsion and torsion-warping deformations. The theory is validated against experimental results for various cross-section beams with elastic couplings.

  • PDF

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.

Dynamic Mode Analysis of Thin Walled Closed Section Beams under Warping Conditions (Warping 조건하에서 박판 폐단면 보의 동적 모드 해석)

  • Yu, Hwan-Shin;Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.367-374
    • /
    • 2012
  • A dynamic simulation and test of frame with thin walled closed section beams considering warping conditions have been performed. When a beam is subjected under torsional moment, the cross section will deform an warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. This paper presents that an warping restraint factor in finite element model effects the behavior of beam deformation and dynamic mode shape. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame.

A Comparative Study on Influence Line of Curved I-Girder Grid Bridge with Constant Cross Section and Variable Cross Section (등·변단면 I-형 곡선격자형교의 영향선에 관한 비교연구)

  • Chang, Byung Soon;Seo, Sang Geun;Ryoo, Eun Yeol;Yun, Jeung Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.615-627
    • /
    • 1998
  • In order to determine the maximum shear force, the maximum bending moment, the maximum pure torsion. the maximum warping torsion, and the maximum bimoment for the curved girder grid bridges, it is important to find the location of live load applied to the curved girder grid bridges, so that the influence line can be estimated. The fundamental differential equation concerning the behaviour with warping effects for the curved girder is developed by Vlasov. In this paper, the influence line of shear force, bending moment, pure torsion, warping torsion, and bimoment due to unit vertical load and unit torsional moment for curved I-girder grid bridges with variable and constant cross section are obtained by using the finite difference method and compared with respectively.

  • PDF

A Study on Influence Line of Curved I-Girder Grid Bridge with Constant Cross Section (등단면 I-형 곡선 격자형교의 영향선에 관한 연구)

  • Chang, Byung Soon;Ryoo, Eun Yeol;Joo, Jae Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.501-513
    • /
    • 1997
  • The general behavior of curved girder including the warping effects is formulated by series of differential equations postulated by Vlasov. In order to determine the maximum shear force, the maximum bending moment, the maximum pure torsion, the maximum warping torsion, and the maximum bimoment for the curved girder grid bridges, it is important to find the location of live load applied to the curved girder grid bridges, so that the influence line can be estimated. In this paper, the influence line of shear force, bending moment, pure torsion, warping torsion, and bimoment due to unit vertical load and unit torsional moment for curved I-girder grid bridges are obtained by using the finite difference method.

  • PDF

Vibration analysis of asymmetric shear wall and thin walled open section structures using transfer matrix method

  • Bozdogan, Kanat Burak;Ozturk, Duygu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.95-107
    • /
    • 2009
  • A method for vibration analysis of asymmetric shear wall and Thin walled open section structures is presented in this paper. The whole structure is idealized as an equivalent bending-warping torsion beam in this method. The governing differential equations of equivalent bending-warping torsion beam are formulated using continuum approach and posed in the form of simple storey transfer matrix. By using the storey transfer matrices and point transfer matrices which consider the inertial forces, system transfer matrix is obtained. Natural frequencies can be calculated by applying the boundary conditions. The structural properties of building may change in the proposed method. A numerical example has been solved at the end of study by a program written in MATLAB to verify the presented method. The results of this example display the agreement between the proposed method and the other valid method given in literature.

Torsional Behaviors of Prestressed Double T-Beam (프리스트레스트 Double T-Beam의 비틀림 거동)

  • Sung, Won-Jin;Lee, Yong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.315-318
    • /
    • 2005
  • Vlasov's hypothesis provides a way to solve the torsional problem with warping torsion of double T-beam section. Not only the warping torsion of the gross section of double T-beam but the torsional resistances of PS tendons and reinforcements have to be considered together in the analysis in which the latter is the restoring roles provided by the upward and downward force components in a geometrical symmetric configuration. It means that the torsional resistances of PS tendons and reinforcements, usually ignored, store the strain energies due to up-downward geometrical changes. Space frame element with 7-degrees of freedom are used for the finite element approximation of the real behaviors. Bimoments and angles of twist obtained from the proposed method show good agreements with those of 3-D. finite element analysis and analytical analysis

  • PDF

Free vibration and elastic analysis of shear-deformable non-symmetric thin-walled curved beams: A centroid-shear center formulation

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.19-33
    • /
    • 2005
  • An improved shear deformable thin-walled curved beam theory to overcome the drawback of currently available beam theories is newly proposed for the spatially coupled free vibration and elastic analysis. For this, the displacement field considering the shear deformation effects is presented by introducing displacement parameters defined at the centroid and shear center axes. Next the elastic strain and kinetic energies considering the shear effects due to the shear forces and the restrained warping torsion are rigorously derived. Then the equilibrium equations are consistently derived for curved beams with non-symmetric thin-walled sections. It should be noticed that this formulation can be easily reduced to the warping-free beam theory by simply putting the sectional properties associated with warping to zero for curved beams with L- or T-shaped sections. Finally in order to illustrate the validity and the accuracy of this study, finite element solutions using the isoparametric curved beam elements are presented and compared with those in available references and ABAQUS's shell elements.

The Theory of Thin-Walled Curved Rectangular Box Beams Under Torsion and Out-of-Plane Bending (비틀림과 평면외 굽힘을 받는 직사각단면 곡선 박판보 이론)

  • Kim, Yun-Yeong;Kim, Yeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2637-2645
    • /
    • 2000
  • We propose a new one-dimensional theory for thin-walled curved box beams having rectangular cross sections, in which torsional, out-of-plane bending, warping and distortional deformations are coupled. The major difference between the present theory and existing theories lies in that the present theory takes into account additional distortion as well as warping. To verify the present theory, a standard finite element based on the present theory is developed and used for numerical analysis. A couple of numerical examples indeed confirm that the consideration of warping and distortional deformations is very important.