• Title/Summary/Keyword: warning information

Search Result 701, Processing Time 0.031 seconds

Lane Detection based Open-Source Hardware according to Change Lane Conditions (오픈소스 하드웨어 기반 차선검출 기술에 대한 연구)

  • Kim, Jae Sang;Moon, Hae Min;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • Recently, the automotive industry has been studied about driver assistance systems for helping drivers to drive their cars easily by integrating them with the IT technology. This study suggests a method of detecting lanes, robust to road condition changes and applicable to lane departure warning and autonomous vehicles mode. The proposed method uses the method of detecting candidate areas by using the Gaussian filter and by determining the Otsu threshold value and edge. Moreover, the proposed method uses lane gradient and width information through the Hough transform to detect lanes. The method uses road lane information detected before to detect dashed lines as well as solid lines, calculates routes in which the lanes will be located in the next frame to draw virtual lanes. The proposed algorithm was identified to be able to detect lanes in both dashed- and solid-line situations, and implement real-time processing where applied to Raspberry Pi 2 which is open source hardware.

Identification of Factors Affecting the Crash Severity and Safety Countermeasures Toward Safer Work Zone Traffic Management (공사구간 교통관리특성을 고려한 고속도로 교통사고 심각도 영향요인 분석 및 안전성 증진 방안)

  • YOON, Seok Min;OH, Cheol;PARK, Hyun Jin;CHUNG, Bong Jo
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.4
    • /
    • pp.354-372
    • /
    • 2016
  • This study identified factors affecting the crash severity at freeway work zones. A nice feature of this study was to take into account the characteristics of work zone traffic management in analyzing traffic safety concerns. In addition to crash records, vehicle detection systems (VDS) data and work zone historical data were used for establishing a dataset to be used for statistical analyses based on an ordered probit model. A total of six safety improvement strategies for freeway work zones, including traffic merging method, guidance information provision, speed management, warning information systems, traffic safety facility, and monitoring of effectiveness for countermeasures, were also proposed.

A Study on the Carrying Capacity of Donggung and Wolji, Gyeongju - Centering around the Physical.Psychological Carrying Capacity - (경주 동궁과 월지의 적정수용력 연구 - 물리적 심리적 수용력을 중심으로 -)

  • Pan, Xiang;Xu, Huan;Kang, Tai-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.21-28
    • /
    • 2012
  • The main objective of this study is to reveal the basic information for structuring the subsequent information monitoring and early warning system and configuring the sustainable programme management of Donggung and wolji, Gyeongju which was much utilized as historic garden with the physical carrying capacity and the psychological carrying capacity according to on-spot observation and survey. The physical carrying capacity can be calculated with landscape node spatial capacity, road spatial capacity and other spatial capacity and the psychological carrying capacity can be calculated with vision, hearing, touch, action feeling and satisfaction. The number of actual tourists was lower than the carrying capacity in daytime, but it was about twice as great as that in the night. And because the tourists were mainly tour groups, the time of environment damaged was short and fixed. The management improvement program was brought forward centre around the results.

Real-Time Fire Detection based on CNN and Grad-CAM (CNN과 Grad-CAM 기반의 실시간 화재 감지)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1596-1603
    • /
    • 2018
  • Rapidly detecting and warning of fires is necessary for minimizing human injury and property damage. Generally, when fires occur, both the smoke and the flames are generated, so fire detection systems need to detect both the smoke and the flames. However, most fire detection systems only detect flames or smoke and have the disadvantage of slower processing speed due to additional preprocessing task. In this paper, we implemented a fire detection system which predicts the flames and the smoke at the same time by constructing a CNN model that supports multi-labeled classification. Also, the system can monitor the fire status in real time by using Grad-CAM which visualizes the position of classes based on the characteristics of CNN. Also, we tested our proposed system with 13 fire videos and got an average accuracy of 98.73% and 95.77% respectively for the flames and the smoke.

Application of the Onsite Earthquake Early Warning Technology Using the Seismic P-Wave in Korea (P파를 이용한 지진 현장 경보체계기술의 국내 적용)

  • Lee, Ho-Jun;Lee, Jin-Koo;Jeon, Inchan
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.440-449
    • /
    • 2018
  • Purpose: This study aims to design and verify an onsite EEWS that extracts the P-wave from a single seismic station and deduce the PGV. Method: The P-wave properties of Pd, Pv, and Pa were calculated by using 12 seismic waveform data extracted from historic seismic records in Korea, and the PGVs were computed using empirical equation on the P properties - PGV relationship and compared with the observed values. Results: Comparison of the observed and estimated PGVs within the alarm level shows the error rate of 86.7% as minimum. By reducing the PTW to 2 seconds, the alarm time can be shortened by 1 second and the seismic blind zone near the epicenter can be shortened by 6 Km. Conclusion: Through this study, we confirmed the availability of the on-site EEWS in Korea. For practical use, it is necessary to develop regression formula and algorithm reflect local effect in Korea by increasing the number of seismic waveform data through continuous observation, and to eliminate the noise from the site.

Portable system module for wireless based on mountain climbing safety using 447 MHz band FSK (447MHz 대역 FSK방식을 이용한 무선 통신 기반 산행 안전을 위한 휴대 시스템)

  • Lim, Jae Don;Kim, Jung Jip;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1428-1433
    • /
    • 2019
  • Interest in mountain accidents among the technical trends of disasters in Korea is increasing continuously. When accidents occur, the most common methods are location tracking and accident reporting using smartphones, and rescue activities are being carried out by using them. In this paper, we proposed an improvement of wireless safety system for mountain climbing safety using 447 FSK. Using the 447 MHz band transmitter / receiver, it accumulates position coordinates and data through position transmission and rescue signal transmission in case of anomalies. If a sender is out of the threshold of the set area range, a danger warning notification can be generated to quickly exit the danger zone. Provide services. In addition, it is considered that the health condition of the sender is continuously checked and the receiver is warned when the specified threshold is exceeded, so that it is possible to respond to the sender's disaster.

Implementation of Dynamic Context-Awareness Platform for Internet of Things(IoT) Loading Waste Fire-Prevention based on Universal Middleware (유니버설미들웨어기반의 IoT 적재폐기물 화재예방 동적 상황인지 플랫폼 구축)

  • Lee, Hae-Jun;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1231-1237
    • /
    • 2022
  • It is necessary to dynamic recognition system with real time loading height and pressure of the loading waste, the drying of wood, batteries, and plastic wastes, which are representative compositional wastes, and the carbonization changes on the surface. The dynamic context awareness service constituted a platform based on Universal Middleware system using BCN convergence communication service as a Ambient SDK model. A context awareness system should be constructed to determine the cause of the fire based on the analysis data of fermentation heat point with natural ignition from the load waste. Furthermore, a real-time dynamic service platform that could be apply to the configuration of scenarios for each type from early warning fire should be built using Universal Middleware. Thus, this issue for Internet of Things realize recognition platform for analyzing low temperature fired fire possibility data should be dynamically configured and presented.

Malicious Code Injection Vulnerability Analysis in the Deflate Algorithm (Deflate 압축 알고리즘에서 악성코드 주입 취약점 분석)

  • Kim, Jung-hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.869-879
    • /
    • 2022
  • Through this study, we discovered that among three types of compressed data blocks generated through the Deflate algorithm, No-Payload Non-Compressed Block type (NPNCB) which has no literal data can be randomly generated and inserted between normal compressed blocks. In the header of the non-compressed block, there is a data area that exists only for byte alignment, and we called this area as DBA (Disposed Bit Area), where an attacker can hide various malicious codes and data. Finally we found the vulnerability that hides malicious codes or arbitrary data through inserting NPNCBs with infected DBA between normal compressed blocks according to a pre-designed attack scenario. Experiments show that even though contaminated NPNCB blocks were inserted between normal compressed blocks, commercial programs decoded normally contaminated zip file without any warning, and malicious code could be executed by the malicious decoder.

A study on alarm broadcasting method using public data and IoT sensing data (공공데이터와 IoT 센싱 데이터를 활용한 경보방송 방법에 관한 연구)

  • Ryu, Taeha;Kim, Seungcheon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.21-27
    • /
    • 2022
  • As society develops and becomes more complex, new and diverse types of disasters such as fine dust and infectious diseases are occurring. However, in the past, there was no PA(Public Address) system that provided accurate information to prepare for such a disaster. In this paper, we propose a public address system that automatically broadcasts an alarm by analyzing polluted air quality data collected from public data and IoT sensors. The warning level varies depending on the air quality, and the information provided by public data may show a significantly different result from the guide area due to various factors such as the distance from the measuring station or the wind direction. To compensate for this, we are going to propose a method for broadcasting by comparing and analyzing data obtained from public data and data from on-site IoT sensors.

AI-based smart water environment management service platform development (AI기반 스마트 수질환경관리 서비스 플랫폼 개발)

  • Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.56-63
    • /
    • 2022
  • Recently, the frequency and range of algae occurrence in major rivers and lakes are increasing due to the increase in water temperature due to climate change, the inflow of excessive nutrients, and changes in the river environment. Abnormal algae include green algae and red algae. Green algae is a phenomenon in which blue-green algae such as chlorophyll (Chl-a) in the water grow excessively and the color of the water changes to dark green. In this study, a 3D virtual world of digital twin was built to monitor and control water quality information measured in ecological rivers and lakes in the living environment in real time from a remote location, and a sensor measuring device for water quality information based on the Internet of Things (IOT) sensor. We propose to build a smart water environment service platform that can provide algae warning and water quality forecasting by predicting the causes and spread patterns of water pollution such as algae based on AI machine learning-based collected data analysis.