DOI QR코드

DOI QR Code

Application of the Onsite Earthquake Early Warning Technology Using the Seismic P-Wave in Korea

P파를 이용한 지진 현장 경보체계기술의 국내 적용

  • Received : 2018.11.07
  • Accepted : 2018.12.06
  • Published : 2018.12.31

Abstract

Purpose: This study aims to design and verify an onsite EEWS that extracts the P-wave from a single seismic station and deduce the PGV. Method: The P-wave properties of Pd, Pv, and Pa were calculated by using 12 seismic waveform data extracted from historic seismic records in Korea, and the PGVs were computed using empirical equation on the P properties - PGV relationship and compared with the observed values. Results: Comparison of the observed and estimated PGVs within the alarm level shows the error rate of 86.7% as minimum. By reducing the PTW to 2 seconds, the alarm time can be shortened by 1 second and the seismic blind zone near the epicenter can be shortened by 6 Km. Conclusion: Through this study, we confirmed the availability of the on-site EEWS in Korea. For practical use, it is necessary to develop regression formula and algorithm reflect local effect in Korea by increasing the number of seismic waveform data through continuous observation, and to eliminate the noise from the site.

연구목적: 본 연구는 단일 지진관측기로부터 P파를 추출하여 PGV를 산출하는 현장지진경보(Onsite EEW)를 설계와 검증을 목적으로 한다. 연구방법: 국내에서 발생한 12개의 지진파형데이터를 이용하여 적합한 P파 감지 시간(PTW)의 크기를 정하여, P파 물성치인 Pd, Pv 및 Pa를 산출하고, 경험식을 통한 PGV 추정값을 관측치와 비교하였다. 연구결과: PGV 관측치와 추정치의 비교결과를 경보 발령 기준인 진도 등급 내에서 비교하였을 때 오보 비율은 최소 86.7%의 적중률을 보였으며, PTW를 2초로 줄이는 효과로 경보시간은 1초, 공백역은 6Km를 단축할 수 있다. 결론: 본 연구를 통해 국내에서 지진현장경보의 가용성을 확인하였으며, 실제 활용을 위해서는 지속적인 관측을 통해 지진파형 데이터수를 늘이고, 현장 노이즈를 제거하는 기술을 통해 한국형의 회귀식과 알고리즘 개발이 필요하다.

Keywords

JNJBBH_2018_v14n4_440_f0001.png 이미지

Fig. 1. Diagram of seismic analyzer for on-site warning

JNJBBH_2018_v14n4_440_f0002.png 이미지

Fig. 2. Stations used for optimal PTW

JNJBBH_2018_v14n4_440_f0003.png 이미지

Fig. 4. hypocentral distance and Pd time variant after trigger(The 2016 Gyeongju earthquake)

JNJBBH_2018_v14n4_440_f0004.png 이미지

Fig. 6. A scatter plot of PGV of the observed and estimated from Pd using Equation (1).

JNJBBH_2018_v14n4_440_f0005.png 이미지

Fig. 8. A scatter plot of PGV of the observed and estimated from Pv using Equation (3).

JNJBBH_2018_v14n4_440_f0006.png 이미지

Fig. 10. A scatter plot of PGV of the observed and estimated from Pd using average Equation (2)~(4).

JNJBBH_2018_v14n4_440_f0007.png 이미지

Fig. 11. Blind-zone variant by PTW in onsite warning

JNJBBH_2018_v14n4_440_f0008.png 이미지

Fig. 3. Stations used for optimal PTW

JNJBBH_2018_v14n4_440_f0009.png 이미지

Fig. 5. hypocentral distance and Pd time variant after trigger(The 2017 Pohang earthquake)

JNJBBH_2018_v14n4_440_f0010.png 이미지

Fig. 7. A scatter plot of PGV of the observed and estimated from Pd using Equation (2).

JNJBBH_2018_v14n4_440_f0011.png 이미지

Fig. 9. A scatter plot of PGV of the observed and estimated from Pa using Equation (4).

Table 1. Dataset for P-wave analysis

JNJBBH_2018_v14n4_440_t0001.png 이미지

References

  1. Bose, M., Heaton, T. and Hauksson, E. (2012). "Rapid estimation of earthquake source and ground-motion parameters for earthquake early warning using data from a single three- component broadband or strong-motion sensor" Bulletin of the Seismological Society of America, vol.102, No.2, pp. 738-750. doi: 10.1785/0120110152.
  2. Colombelli, S., Caruso, A., Zollo, A., Festa, G. and Kanamori, H. (2015). "A P wave-based, on-site method for earthquake early warning" Geophysical Research Letters, vol.42, No.5, pp. 1390-1398. doi: 10.1002/2014GL063002.
  3. Colombelli, S., Zollo, A., Festa, G. and Picozzi, M. (2014). "Evidence for a difference in rupture initiation between small and large earthquakes" Nature Communications. Nature Publishing Group, vol.5, No.1, p. 3958. doi: 10.1038/ncomms4958.
  4. Hsu T. Y., Wu S. Y., Huang S. K., Chiang H. W., Lu K. C., Lin P. Y. and Wen K. L.(2016). "Performance of On-site Earthquake Early Warning Systems for Different Sensor Locations." International Scholarly and Scientific Research & Innovation, Vol.10, No.8, pp.793-798.
  5. Kanamori, H. (2005). "Real-Time Seismology and Earthquake Damage Mitigation" Annual Reviews of Earth and Planetary Sciences. Annual Reviews, vol.33, No.1, pp. 195-214. doi: 10.1146/annurev.earth.33.092203.122626.
  6. Lomax, A., Satriano, C. and Vassallo, M. (2012). "Automatic Picker Developments and Optimization: FilterPicker-a Robust, Broadband Picker for Real-Time Seismic Monitoring and Earthquake Early Warning" Seismological Research Letters, vol.83, No.3, pp. 531-540. doi: 10.1785/gssrl.83.3.531.
  7. Meier, M. A., Heaton, T. and Clinton, J. (2016). "Evidence for universal earthquake rupture initiation behavior" Geophysical Research Letters, vol.43, No.15, pp. 7991-7996. doi: 10.1002/2016GL070081.
  8. Nakamura, Y. (1988). "On the urgent detection and alarm system (UrEDAS)" in Ninth World Conference on Earthquake Engineering, pp. 673-678. doi: ISBN 4-89580-010-5.
  9. Nakamura, Y. (2003). "A New Concept for the Earthquake Vulnerability Estimation and its Application to the Early Warning System" Early Warning Systems for Natural Disaster Reduction. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 693-699. doi: 10.1007/978-3-642-55903-7_92.
  10. Odaka T, Ashiya K, Tsukada S, Sato S, Ohtake K, Nozaka D. (2003). "A new method of quickly estimating epicentral distance and magnitude from a single seismic record." Bulletin of the Seismological Society of America 2003, 93(1), pp.526-532.
  11. Wald, D. J., Quitoriano V., Heaton T. H., and Kanamori H. (1999). "Relationships between peak ground acceleration, peak ground velocity, and modified mercalli intensity in California" Earthquake Spectra, vol.15, No.3, pp. 557-564. doi: 10.1193/1.1586058.
  12. Wu, Y. M. and Kanamori, H. (2005). "Experiment on an onsite early warning method for the Taiwan early warning system" Bulletin of the Seismological Society of America, vol.95, No.1, pp. 347-353. doi: 10.1785/0120040097.
  13. Wu, Y. M. and Kanamori, H. (2008). "Development of an earthquake early warning system using real-time strong motion signals" Sensors, vol.8, No.1, pp. 1-9. doi: 10.3390/s8010001.
  14. Junyoung Yun, Geumyoung Min, Dukhoon Jung. (2015). "A study of the Domestic Trend in the law and institutions of International Standard Disaster Management - Focusing on ISO/TC 292 -." Journal of The Korean Society of Disaster Information, vol.11 No.2, pp. 287-296. https://doi.org/10.15683/kosdi.2015.11.2.287
  15. Zollo, A., Amoroso, O., Lancieri, M., Wu, Y. M. and Kanamori, H. (2010). "A threshold-based earthquake early warning using dense accelerometer networks" Geophysical Journal International, vol.183, No.2, pp. 963-974. doi: 10.1111/j.1365-246X.2010.04765.x.

Cited by

  1. 국내에서의 지진현장경보 기술 고도화 및 적용 vol.16, pp.4, 2018, https://doi.org/10.15683/kosdi.2020.12.31.670