• Title/Summary/Keyword: wall shear stress

Search Result 460, Processing Time 0.028 seconds

Wall Shear Stress Between Compliant Plates Under Oscillatory Flow Conditions: Influence of Wall Motion, Impedance Phase Angle and Non-Newtonian Fluid (맥동유동하에 있는 유연성 있는 평판 사이의 벽면전단응력: 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향)

  • Choe, Ju-Hwan;Lee, Jong-Seon;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.18-28
    • /
    • 2001
  • The present study investigates flow dynamics between two dimensional compliant plates under sinusoidal flow conditions in order to understand influence of wall motion, impedance phase angle (time delay between pressure and flow waveforms), and non-Newtonian fluid on wall shear stress using computational fluid dynamics. The results showed that wall motion induced additional terms in the streamwise velocity profile and the pressure gradient. These additional terms due to wall motion reduced the amplitude of wall shear stress and also changed the mean wall shear stress. The trend of the changes was very different depending on the impedance phase angle. As the impedance phase angle was changed to more negative values, the mean wall shear stress decreased while the amplitude of wall shear stress increased. As the phase angle was reduced from 0°to -90°under $\pm$4% wall motion, the mean wall shear stress decreased by 12% and the amplitude of wall shear stress increased by 9%. Therefore, for hypertensive patients who have large negative phase angles, the ratio of amplitude and mean of the wall shear stress is raised resulting in a more vulnerable state to atherosclerosis according to the low and oscillatory shear stress theory. We also found that non-Newtonian characteristics of the blood protect atherosclerosis by decreasing the oscillatory shear index.

Wall Shear Stress Distribution in the Abdominal Aortic Bifurcation : Influence of wall Motion, Impedance Phase Angle, and non-Newtonian fluid (복부대동맥 분기관에서의 벽면전단응력 분포 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향)

  • Choi J.H.;Kim C.J.;Lee C.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.261-271
    • /
    • 2000
  • The present study investigated flow dynamics of a two-dimensional abdominal aortic bifurcation model under sinusoidal flow conditions considering wall motion. impedance phase angle(time delay between pressure and flow waveforms), and non-Newtonian fluid using computational fluid dynamics. The wall shear stress showed large variations in the bifurcated region and the wall motion reduced amplitude of wall shear stress significantly. As the impedance phase angle was changed to more negative values, the mean wall shear stress (time-averaged) decreased while the amplitude (oscillatory) of wall shear stress increased. At the curvature site on the outer wall where the mean wall shear stress approached zero. influence of the phase angle was relatively large. The mean wall shear stress decreased by $50\%$ in the $-90^{\circ}$ phase angle (flow wave advanced pressure wave by a quarter period) compared to the $0^{\circ}$ phase angle while the amplitude of wall shear stress increased by $15\%$. Therefore, hypertensive patients who tend to have large negative phase angles become more vulnerable to atherosclerosis according to the low and oscillatory shear stress theory because of the reduced mean and the increased oscillatory wall shear stresses. Non-Newtonian characteristics of fluid substantially increased the mean wall shear stress resulting in a less vulnerable state to atherosclerosis.

  • PDF

Fluid Dynamics near end-to-end Anastomoses Part III in Vitro wall Shear Stress Measurement

  • Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.253-262
    • /
    • 1992
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow condi- tions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experi- mental measurements were in good agreement lith numerical results except In flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compli- ance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia (ANFH) in end-to-end anastomoses.

  • PDF

Numerical Analysis of Transitional Flow in a Stenosed Carotid Artery (협착된 경동맥내 천이 유동 수치 해석)

  • Kim, Dongmin;Hwang, Jinyul;Min, Too-Jae;Jo, Won-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.1
    • /
    • pp.52-63
    • /
    • 2022
  • Direct numerical simulation of blood flow in a stenosed, patient-specific carotid artery was conducted to explore the transient behavior of blood flow with special emphasis on the wall-shear stress distribution over the transition region. We assumed the blood as an incompressible Newtonian fluid, and the vessel was treated as a solid wall. The pulsatile boundary condition was applied at the inlet of the carotid. The Reynolds number is 884 based on the inlet diameter, and the maximum flow rate and the corresponding Womersley number is approximately 5.9. We found the transitional behavior during the acceleration and deceleration phases. In order to quantitatively examine the wall-shear stress distribution over the transition region, the probability density function of the wall-shear stress was computed. It showed that the negative wall-shear stress events frequently occur near peak systole. In addition, the oscillatory shear stress index was used to further analyze the relationship with the negative wall-shear stress appearing in the systolic phase.

NUMERICAL ANALYSIS OF BLOOD FLOW DYNAMICS AND WALL MECHANICS IN A COMPLIANT CAROTID BIFURCATION MODEL (혈관 유연성을 고려한 경동맥 분기부 모델 혈류역학 해석)

  • Nguyen, T.M.;Lee, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.500-503
    • /
    • 2011
  • Blood flow simulations in an idealized carotid bifurcation model with considering wall compliance were carried out to investigate the effect of wall elasticity on the wall shear stress and wall solid stress. Canonical waveforms of flowrates and pressure in the carotid arteries were imposed for the boundary conditions. Comparing to rigid wall model, generally, we could find an increased recirculation region at the carotid bulb and an overall reduced wall shear stress. Also, there was appreciable change of flowrate and pressure waveform in longitudinal direction. Solid and wall shear stress concentration occurs at the bifurcation apex.

  • PDF

Evolution of Low Wall-Shear Stress Area in Anterior Communicating Artery Aneurysm (전교통동맥류 내부 유동 전산해석을 통한 낮은 벽면 전단 응력 영역 발달 분석)

  • Guk, Yoonhyeok;Kwon, Taeho;Moon, Seongdeuk;Kim, Dongmin;Hwang, Jinyul;Bae, Youngoh
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.45-54
    • /
    • 2022
  • We analyzed the low wall-shear stress area in the intracranial aneurysm that occurred at an anterior communicating artery with a special emphasis on vortical structures close to the wall. We reconstructed the aneurysm model from patient CTA data. We assumed blood as an incompressible Newtonian fluid and treated the blood vessel as a solid wall. The pulsatile boundary condition was applied at the inlet of the anterior cerebral artery. From the instantaneous flow field, we computed the histogram of the wall-shear stress over the aneurysm wall and found the low wall-shear stress event (< 0.4 Pa). This extreme event was due to the low wall-shear stress area that occurred at the daughter sac. We found that the merging of two vortices induced the low wall-shear stress area; one arises from the morphological characteristics of the daughter sac, and the other is formed by a jet flow into the aneurysm sac. The latter approaches the daughter sac, which ultimately leads to the strong ejection event near the daughter sac.

Influence of Wall Motion and Impedance Phase Angle on the Wall Shear Stress in an Elastic Blood Vessel Under Oscillatory Flow Conditions (맥동유동하에 있는 탄성혈관에서 벽면운동과 임피던스 페이즈앵글이 벽면전단응력에 미치는 영향)

  • 최주환;이종선;김찬중
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.363-372
    • /
    • 2000
  • The present study investigated flow dynamics of a straight elastic blood vessel under sinusoidal flow conditions in order to understand influence of wall motion and impedance phase angle(time delay between pressure and flow waveforms) on wall shear stress distribution using computational fluid dynamics. For the straight elastic tube model considered in the our method of computation. The results showed that wall motion induced additional terms in the axial velocity profile and the pressure gradient. These additional terms due to wall motion reduced the amplitude of wall shear stress and also changed the mean wall shear stress. Te trend of the changes was very different depending on the impedance phase angle. As the wall shear stress increased. As the phase angle was reduced from 0$^{\circ}$to -90$^{\circ}$for ${\pm}$4% wall motion case, the mean wall shear stress decreased by 10.5% and the amplitude of wasll shear stress increased by 17.5%. Therefore, for hypertensive patients vulnerable state to atherosclerosis according to low and oscillatory shear stress theory.

  • PDF

EEG Signal Processing in Japan

  • Utsunomiya, Toshio
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.9-12
    • /
    • 1985
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses.

  • PDF

Processing parallel-disk viscometry data in the presence of wall slip

  • Leong, Yee-Kwong;Campbell, Graeme R.;Yeow, Y. Leong;Withers, John W.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.51-58
    • /
    • 2008
  • This paper describes a two-step Tikhonov regularization procedure for converting the steady shear data generated by parallel-disk viscometers, in the presence of wall slip, into a shear stress-shear rate function and a wall shear stress-slip velocity functions. If the material under test has a yield stress or a critical wall shear stress below which no slip is observed the method will also provide an estimate of these stresses. Amplification of measurement noise is kept under control by the introduction of two separate regularization parameters and Generalized Cross Validation is used to guide the selection of these parameters. The performance of this procedure is demonstrated by applying it to the parallel disk data of an oil-in-water emulsion, of a foam and of a mayonnaise.

Wall slip of vaseline in steady shear rheometry

  • Song, Ki-Won;Chang, Gap-Shik;Koo, Ja-Seung
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2003
  • The steady shear flow properties of vaseline generally used as a base of the pharmaceutical dosage forms were studied in the consideration of wall slip phenomenon. The purpose of this study was to show that how slip may affect the experimental steady-state flow curves of semisolid ointment bases and to discuss the ways to eliminate (or minimize) wall slip effect in a rotational rheometer. Using both a strain-controlled ARES rheometer and a stress-controlled AR1000 rheometer, the steady shear flow behavior was investigated with various experimental conditions ; the surface roughness, sample preparation, plate diameter, gap size, shearing time, and loading methods were varied. A stress-controlled rheometer was suitable for investigating the flow behavior of semisolid ointment bases which show severe wall slip effects. In the conditions of parallel plates attached with sand paper, treated sample, smaller diameter fixture, larger gap size, shorter shearing time, and normal force control loading method, the wall slip effects could be minimized. A critical shear stress for the onset of slip was extended to above 10,000 dyne/$\textrm{cm}^2$. The wall slip effects could not be perfectly eliminated by any experimental conditions. However, the slip was delayed to higher value of shear stress by selecting proper fixture properties and experimental conditions.