Processing parallel-disk viscometry data in the presence of wall slip

  • Leong, Yee-Kwong (School of Mechanical Engineering, The University of Western Australia) ;
  • Campbell, Graeme R. (School of Engineering, James Cook University) ;
  • Yeow, Y. Leong (Department of Chemical and Biomolecular Engineering, The University of Melbourne) ;
  • Withers, John W. (Department of Chemical and Biomolecular Engineering, The University of Melbourne)
  • Published : 2008.06.30

Abstract

This paper describes a two-step Tikhonov regularization procedure for converting the steady shear data generated by parallel-disk viscometers, in the presence of wall slip, into a shear stress-shear rate function and a wall shear stress-slip velocity functions. If the material under test has a yield stress or a critical wall shear stress below which no slip is observed the method will also provide an estimate of these stresses. Amplification of measurement noise is kept under control by the introduction of two separate regularization parameters and Generalized Cross Validation is used to guide the selection of these parameters. The performance of this procedure is demonstrated by applying it to the parallel disk data of an oil-in-water emulsion, of a foam and of a mayonnaise.

Keywords

References

  1. Bertola, V., F. Bertrand, H. Tabuteau, D. Bonn and P. Coussot, 2003, Wall slip and yielding in pasty materials, J. Rheol. 47, 1211-1226 https://doi.org/10.1122/1.1595098
  2. Brunn, P. O., 1998, A note on the slip velocity concept for purely rotational viscometric flows, Rheol. Acta 37, 196-197 https://doi.org/10.1007/s003970050107
  3. Coussot, P., 2004, Private Communication
  4. Engl, H. W., M. Hanke and A. Neubauer, 2000, Regularization of Inverse Problems, Kluwer, Dordrecht
  5. Kiljanski, T., 1989, A method for correction of the wall-slip effect in a Couette rheometer, Rheol. Acta 28, 61-64 https://doi.org/10.1007/BF01354770
  6. Macosko, C. W., 1994, Rheology: Principles, Measurements and Applications, VCH, New York
  7. Mooney, M., 1931, Explicit formulas for slip and fluidity, J.Rheol. 2, 210-222 https://doi.org/10.1122/1.2116364
  8. Plucinski, J., R. K. Gupta and S. Chakrabarti, 1998, Wall slip of mayonnaises in viscometers, Rheol. Acta 37, 256-269 https://doi.org/10.1007/s003970050113
  9. Schlegel, D., 1980, Bestimmung der schubspannungsfunktion des blutes mit dem Couette-rheometer unter Berücksichtigung des wandverhaltens, Rheol. Acta 19, 375-380 https://doi.org/10.1007/BF01543150
  10. Shipman, R. W. G., M. M. Denn and R. Keunings, 1991, Freesurface effects in torsional parallel-plate rheometry, Ind. Eng.Chem. Res. 30, 918-922 https://doi.org/10.1021/ie00053a014
  11. Wahba, G., 1990, Spline Models for Observational Data, SIAM, Philadelphia
  12. Wein, O. and V. V. Tovchigrechko, 1992, Rotational viscometry under presence of apparent wall slip, J. Rheol. 36, 821-844 https://doi.org/10.1122/1.550319
  13. Yeow, Y. L., H. L. Lee, A. R. Melvani and G. C. Mifsud, 2003, A new method of processing capillary viscometry data in the presence of wall slip, J. Rheol. 47, 337-348 https://doi.org/10.1122/1.1538606
  14. Yeow, Y. L., B. Choon, L. Karniawan and L. Santoso, 2004, Obtaining the shear rate function and the slip velocity function from Couette viscometry data, J. Non-Newtonian Fluid Mech. 124, 43-49 https://doi.org/10.1016/j.jnnfm.2004.07.004
  15. Yeow, Y. L., D. Chandra, A. A. Sardjono, H. Wijaya, Y. K. Leong and A. Khan, 2005, A general method for obtaining shear stress and normal stress functions from parallel disk rheometry data, Rheol. Acta 44, 270-277 https://doi.org/10.1007/s00397-004-0407-2
  16. Yeow, Y. L., Y. K. Leong and A. Khan, 2006, Non-Newtonian flow in parallel-disk viscometers in the presence of wall slip, J. Non-Newtonian Fluid Mech. 139, 85-92 https://doi.org/10.1016/j.jnnfm.2006.07.005
  17. Yeow, Y. L., Y. K. Leong and A. Khan, 2007, Error introduced by a popular method of processing parallel-disk viscometery data, Appl. Rheol. 17, 66415-1-66415-6
  18. Yoshimura, A. and R. K. Prud'homme, 1988, Wall slip corrections for Couette and parallel disk viscometers, J. Rheol. 32, 53-67 https://doi.org/10.1122/1.549963