Browse > Article
http://dx.doi.org/10.5407/jksv.2022.20.2.045

Evolution of Low Wall-Shear Stress Area in Anterior Communicating Artery Aneurysm  

Guk, Yoonhyeok (School of Mechanical Engineering, Pusan National University)
Kwon, Taeho (School of Mechanical Engineering, Pusan National University)
Moon, Seongdeuk (School of Mechanical Engineering, Pusan National University)
Kim, Dongmin (School of Mechanical Engineering, Pusan National University)
Hwang, Jinyul (School of Mechanical Engineering, Pusan National University)
Bae, Youngoh (Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University)
Publication Information
Journal of the Korean Society of Visualization / v.20, no.2, 2022 , pp. 45-54 More about this Journal
Abstract
We analyzed the low wall-shear stress area in the intracranial aneurysm that occurred at an anterior communicating artery with a special emphasis on vortical structures close to the wall. We reconstructed the aneurysm model from patient CTA data. We assumed blood as an incompressible Newtonian fluid and treated the blood vessel as a solid wall. The pulsatile boundary condition was applied at the inlet of the anterior cerebral artery. From the instantaneous flow field, we computed the histogram of the wall-shear stress over the aneurysm wall and found the low wall-shear stress event (< 0.4 Pa). This extreme event was due to the low wall-shear stress area that occurred at the daughter sac. We found that the merging of two vortices induced the low wall-shear stress area; one arises from the morphological characteristics of the daughter sac, and the other is formed by a jet flow into the aneurysm sac. The latter approaches the daughter sac, which ultimately leads to the strong ejection event near the daughter sac.
Keywords
Intracranial aneurysm; Anterior communicating artery; Computational fluid dynamics; Vortex;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beck, J., S. Rohde, M. El Beltagy, M. Zimmermann, J. Berkefeld, V. Seifert and A. Raabe 2003. "Difference in configuration of ruptured and unruptured intracranial aneurysms determined by biplanar digital subtraction angiography." Acta neurochirurgica, Vol. 145(10): pp 861-865.   DOI
2 Buchanan, J., C. Kleinstreuer, S. Hyun and G. Truskey 2003. "Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta." Journal of biomechanics, Vol. 36(8): pp 1185-1196.   DOI
3 Wiebers, D. O. and I. S. o. U. I. A. Investigators 2003. "Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment." The Lancet, Vol. 362(9378): pp 103-110.   DOI
4 Raghavan, M. L., B. Ma and R. E. Harbaugh 2005. "Quantified aneurysm shape and rupture risk." Journal of neurosurgery, Vol. 102(2): pp 355-362.   DOI
5 Vlak, M. H., A. Algra, R. Brandenburg and G. J. Rinkel 2011. "Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis." The Lancet Neurology, Vol. 10(7): pp 626-636.   DOI
6 Nieuwkamp, D. J., L. E. Setz, A. Algra, F. H. Linn, N. K. de Rooij and G. J. Rinkel 2009. "Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis." The Lancet Neurology, Vol. 8(7): pp 635-642.   DOI
7 Perlmutter, D. and A. L. Rhoton 1976. "Microsurgical anatomy of the anterior cerebral-anterior communicating-recurrent artery complex." Journal of neurosurgery, Vol. 45(3): pp 259-272.   DOI
8 Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy and H. Meng 2011. "Hemodynamic-morphologic discriminants for intracranial aneurysm rupture." Stroke, Vol. 42(1): pp 144-152.   DOI
9 Can, A. and R. Du 2016. "Association of hemodynamic factors with intracranial aneurysm formation and rupture: systematic review and meta-analysis." Neurosurgery, Vol. 78(4): pp 510-520.   DOI
10 Zhang, Y., L. Jing, Y. Zhang, J. Liu and X. Yang 2016. "Low wall shear stress is associated with the rupture of intracranial aneurysm with known rupture point: case report and literature review." BMC neurology, Vol. 16(1): pp 1-4.   DOI
11 Liang, F., X. Liu, R. Yamaguchi and H. Liu 2016. "Sensitivity of flow patterns in aneurysms on the anterior communicating artery to anatomic variations of the cerebral arterial network." J Biomech, Vol. 49(15): pp 3731-3740.   DOI
12 Lu, G., L. Huang, X. Zhang, S. Wang, Y. Hong, Z. Hu and D. Geng 2011. "Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation." American Journal of Neuroradiology, Vol. 32(7): pp 1255-1261.   DOI
13 Bouillot, P., O. Brina, R. Ouared, K.-O. Lovblad, M. Farhat and V. M. Pereira 2014. "Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design." PLoS One, Vol. 9(12): pp e113762.   DOI
14 Le, T. B., D. R. Troolin, D. Amatya, E. K. Longmire and F. Sotiropoulos 2013. "Vortex phenomena in sidewall aneurysm hemodynamics: experiment and numerical simulation." Annals of biomedical engineering, Vol. 41(10): pp 2157-2170.   DOI
15 Liang, L., D. A. Steinman, O. Brina, C. Chnafa, N. M. Cancelliere and V. M. Pereira 2019. "Towards the Clinical utility of CFD for assessment of intracranial aneurysm rupture-a systematic review and novel parameter-ranking tool." Journal of neurointerventional surgery, Vol. 11(2): pp 153-158.   DOI
16 Alfano, J. M., J. Kolega, S. K. Natarajan, J. Xiang, R. A. Paluch, E. I. Levy, A. H. Siddiqui and H. Meng 2013. "Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses." Neurosurgery, Vol. 73(3): pp 497-505.   DOI
17 Tominari, S., A. Morita, T. Ishibashi, T. Yamazaki, H. Takao, Y. Murayama, M. Sonobe, M. Yonekura, N. Saito and Y. Shiokawa 2015. "Prediction model for 3-year rupture risk of unruptured cerebral aneurysms in J apanese patients." Annals of neurology, Vol. 77(6): pp 1050-1059.   DOI
18 Investigators, I. S. o. U. I. A. 1998. "Unruptured intracranial aneurysms-risk of rupture and risks of surgical intervention." New England Journal of Medicine, Vol. 339(24): pp 1725-1733.   DOI
19 Ujiie, H., D. W. Liepsch, M. Goetz, R. Yamaguchi, H. Yonetani and K. Takakura 1996. "Hemodynamic study of the anterior communicating artery." Stroke, Vol. 27(11): pp 2086-2094.   DOI
20 Brilstra, E. H., G. J. Rinkel, Y. van der Graaf, W. J. J. van Rooij and A. Algra 1999. "Treatment of intracranial aneurysms by embolization with coils: a systematic review." Stroke, Vol. 30(2): pp 470-476.   DOI
21 Boussel, L., V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W. S. Smith, W. L. Young and D. Saloner 2008. "Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study." Stroke, Vol. 39(11): pp 2997-3002.   DOI
22 Ethier, C. R. and C. A. Simmons 2007. Introductory biomechanics: from cells to organisms, Cambridge University Press.
23 Dhar, S., M. Tremmel, J. Mocco, M. Kim, J. Yamamoto, A. H. Siddiqui, L. N. Hopkins and H. Meng 2008. "Morphology parameters for intracranial aneurysm rupture risk assessment." Neurosurgery, Vol. 63(2): pp 185-197.   DOI
24 조영일, 유정열, 서상호, 이병권, 이상준 and 권혁문 2006. "생체유체역학 (BIO FLUID MECHANICS). 서울: 야스미디어."
25 Omodaka, S., S.-i. Sugiyama, T. Inoue, K. Funamoto, M. Fujimura, H. Shimizu, T. Hayase, A. Takahashi and T. Tominaga 2012. "Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis." Cerebrovascular Diseases, Vol. 34(2): pp 121-129.   DOI
26 Brinjikji, W., B. J. Chung, C. Jimenez, C. Putman, D. F. Kallmes and J. R. Cebral 2017. "Hemodynamic differences between unsTable and sTable unruptured aneurysms independent of size and location: a pilot study." Journal of neurointerventional surgery, Vol. 9(4): pp 376-380.   DOI
27 Baharoglu, M. I., C. M. Schirmer, D. A. Hoit, B.-L. Gao and A. M. Malek 2010. "Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms: morphometric and computational fluid dynamic analysis." Stroke, Vol. 41(7): pp 1423-1430.   DOI
28 Dempere-Marco, L., E. Oubel, M. Castro, C. Putman, A. Frangi and J. Cebral 2006. CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. International conference on medical image computing and computer-assisted intervention, Springer.
29 Malek, A. M., S. L. Alper and S. Izumo 1999. "Hemodynamic shear stress and its role in atherosclerosis." Jama, Vol. 282(21): pp 2035-2042.   DOI