Wall Shear Stress Distribution in the Abdominal Aortic Bifurcation : Influence of wall Motion, Impedance Phase Angle, and non-Newtonian fluid

복부대동맥 분기관에서의 벽면전단응력 분포 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향

  • Choi J.H. (School Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim C.J. (School Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee C.S. (Department of Mechanical and Control System Engineering, Handong University)
  • 최주환 (서울대학교 기계항공공학부) ;
  • 김찬중 (서울대학교 기계항공공학부) ;
  • 이종선 (한동대학교 기계제어시스템공학부)
  • Published : 2000.06.01

Abstract

The present study investigated flow dynamics of a two-dimensional abdominal aortic bifurcation model under sinusoidal flow conditions considering wall motion. impedance phase angle(time delay between pressure and flow waveforms), and non-Newtonian fluid using computational fluid dynamics. The wall shear stress showed large variations in the bifurcated region and the wall motion reduced amplitude of wall shear stress significantly. As the impedance phase angle was changed to more negative values, the mean wall shear stress (time-averaged) decreased while the amplitude (oscillatory) of wall shear stress increased. At the curvature site on the outer wall where the mean wall shear stress approached zero. influence of the phase angle was relatively large. The mean wall shear stress decreased by $50\%$ in the $-90^{\circ}$ phase angle (flow wave advanced pressure wave by a quarter period) compared to the $0^{\circ}$ phase angle while the amplitude of wall shear stress increased by $15\%$. Therefore, hypertensive patients who tend to have large negative phase angles become more vulnerable to atherosclerosis according to the low and oscillatory shear stress theory because of the reduced mean and the increased oscillatory wall shear stresses. Non-Newtonian characteristics of fluid substantially increased the mean wall shear stress resulting in a less vulnerable state to atherosclerosis.

벽면운동(wall motion)과 임피던스 페이즈앵글(impedance phase angle; 압력파와 유랑파 기아의 위상차)을 고려하여 맥동유동하에 있는 복부대동맥 분기관모델에서 2차원 전산유체해석을 수행하였다. 해석결과 분기광 근처에서응 전단응력의 크기가 매우 급격한 변화를 보임을 관찰하였고 벽면운동은 전단응력의 진폭을 감소시키는 효과를 가져왔다. 임피던스 페이즈 앵글이 음의 값을 향해 갈수록 시간 평균된 벽면 전단응력(mean wall shear stress)의 값은 감소하였으나 진폭(amplitude of wall shear stress)은 오히려 증가하였다. 페이즈앵글의 영향은 평균 벽면전단응력이 영에 근접하는 외벽(outer wall or lateral wall)의 바같쪽으로 휘어지는 부분(curvature site)에서 상대적으로 크게 나타났는데 $-90^{\circ}$ 페이즈앵글(혈류파가 혈압파를 1/4주기 앞서는 경우)일 경우에 $0^{\circ}$의 경우에 비해 평균은 $50\%$정도 감소하였고 진폭은 $15\%$정도의 상승를 나타내었다. 그러므로 고혈압 환자와 같이 큰 음의 페이즈앵글을 갖는 경우, 벽면전단응력의 평균은 낮아지고 시간에 따라 변화량(진폭)은 증가하므로 low and oscillatory wall shear stress 이론에 의하면 동맥경화에 더 민감하게 된다. 비뉴턴유체로 모델링한 경우에는 뉴턴유체의 경우에 비해 벽면전단응력의 평균값이 증가하므로서 동맥경화에 덜 민감하게 된다.

Keywords

References

  1. Atherosclerosis v.46 Arterial geometry affects hemodynamics: a Potential risk factor for atheros-clerosis M.H. Friedman;O.J. Deters;F.F. Mark;C.B. Bargeron;G.M. Hutchins
  2. ASME Journal of Biomechanical Engineering v.102 The role of fluid mechanics in atherogenesis in atherogenesis R.M. Nerem;J.F. Cornhill
  3. Arteriosclerosis v.5 Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque location and low and oscillating shear stress D.N. Ku;D.P. Giddens;C.K. Zarins;S. Glagov
  4. Critical Review in Biomedical Engineering v.19 Biofluid dynamics of arterial bifurcations Z. Lou;W.J. Yang
  5. Cardiovascular Research v.16 Aortic input impedance in mormal man and arterial hypertension; its modifications during changes in aortic pressure J. P. Merillon;G.J. Fontenier;J.F. Lerallut;M.Y. Jaffrin;G.A. Motte;C.P. Genain;R.R. Gourgon
  6. Circulation Research v.75 Hemodynamics and wall shear rate in the abdominal aorta of dogs: effects of vasoactive agents K.C. White;J.F. Kavanaugh;D.M. Wang;J.M. Tarbell
  7. Journal of Fluid Mechanics v.239 Nonlinear analysis of flow in an elastic tube (artery):steady streaming effects D.M. Wang;J.M. Tarbell
  8. ASME Journal of Biomechanical Engineering v.117 Nonlinear analysis of oscillatory flow with a nonzero mean, in an elastic tube (artery) D. M. Wang;J.M. Tarbell
  9. J. of Biomechanics v.27 A study of the wall shear rate distribution near the end to end anastomosis of a rigid graft and a compliant artery K. Rhee;J.M. Tarbell
  10. Biorheology v.34 Wall shear rate measurements in an elastic curved artery model M.W. Weston;J.M. Tarbell
  11. ASME Journal of Biomechanical Engineering v.119 Wall shear stress distribution in an abdominal aortic bifurcation model: effects of vessel compliance and phase angle between pressure and flow waveforms C.S. Lee;J.M. Tarbell
  12. Annals of Biomedical Engineering v.26 Influence of vasoactive drugs on wall shear stress distribution in a compliant model of abdominal aortic bifurcation C.S. Lee;J.M. Tarbell
  13. Wall shear stress variation between pulsating plates dependin J.H. Choi;C.S. Lee;C.J. Kim
  14. Cardiovascular Biomechanics K.B. chandran
  15. Advances in Bioengineering v.107 Effect of the non-Newtonian viscosity of blood on hemodynamics of diseased arterial flow Y.I. Cho;K.R. Hensey
  16. Manual, Version 3.05 STAR-CD Users'
  17. International Journal of Numerical Methods in Fluids v.8 Space conservation law in finite volume calculations of fluid flow I. Demirdzic;M. Peric
  18. ASME Bioengineering Conference v.29 morphological effects of combined fluid shear stress and circumferential cyclic stretch on cultured vascular endothelial cells S.Zhao;A. Suciu;J. E. Moore;T. Ziegfer;E. Burki;J. Meister;H. R. Brunner