• Title/Summary/Keyword: wall panels

Search Result 237, Processing Time 0.029 seconds

Considerations on the Factors Reducing the Sound Transmission Loss of the Honeycomb Panels (허니콤재의 투과손실 저하 인자에 대한 고찰)

  • Kim, Seock-Hyun;Lee, Hyun-Woo;Kim, Jung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2185-2190
    • /
    • 2008
  • In a high speed train, multi-layered panels for floor, side wall and roof are important sound insulating part. As these multi-layered panels require high bending strength vs. weight, corrugated steels or aluminium honeycomb panel are generally used. However, with some inevitable factors, these panels show lower sound insulation performance than that of the plate with the same weight. Transmission loss(TL) often severely decreases in a particular frequency range because of the decrease of the critical frequency, occurrence of local resonance modes and cavity resonance modes, which are not shown in a plate. In this study, frequency range and cause of the TL drop are investigated on the corrugated and honeycomb panels.

  • PDF

Equivalent Continuum Modeling Methods for Flat Corrugated Panels (평판형 주름판넬에 대한 등가 연속체 모델링기법)

  • 이상윤;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.43-50
    • /
    • 2000
  • The corrugated panels are the prime candidate structure for the floor, roof and wall of Korean high speed train. The equivalent continuum modeling approach panels can be used for the efficient design and evaluation of their structural characteristics. The equivalent continuum models, derived from the true complex corrugated panels, should have the same structural behavior as the original structures have. This paper briefly reviews three representative continuum modeling methods: the static analysis method and two plate-models based on modal analysis methods (MAM). These methods are evaluated through some numerical examples by comparing the natural frequencies and static deflections. It is observed that the plate-model based on Rayleigh-Ritz method seems to provide the best results when used in conjunction with the cantilever-type boundary conditions. The equivalent elastic constants of various corrugated panels, depending on the changes in their configurations, are tabulated for efficient use in structural design.

  • PDF

A Study on Cooling Systems with Cold Water Panels in the Walls of Small Buildings (소형 건축 벽면의 냉수 패널에 의한 냉방시스템에 관한 연구)

  • Cho, Dong-Hyun;Jo, Myeong-Gi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.20-26
    • /
    • 2019
  • This study was conducted on cooling systems in which, for the first time at home and abroad, cold water panels are embedded in the walls of small buildings for radiant cooling by heat absorption with cold water. In summer, cold water is circulated through cold water (chiller) circulation tubes embedded in three walls (two side walls and one rear wall) of a building to implement radiant cooling by the coldness of the water. From the results of this study, the experimental and theoretical natural convection heat transfer coefficients were relatively well-matched over the entire experimental range, thereby verifying the reliability of the experimental results. The surface temperature reduction rate of the walls in which cold water panels are embedded was large whereas that of the walls where no cold water panels are embedded was very small.

Iconography on the Reliefs of the Life Story of Buddha in Chandi Borobudur (보로부두르 대탑의 불전(佛傳) 도상(圖像))

  • YOO, Geun Ja
    • SUVANNABHUMI
    • /
    • v.2 no.1
    • /
    • pp.17-53
    • /
    • 2010
  • The Chandi Borobudur was likely constructed around 800 AD, during the period of the Sailendra dynasty in central Java, Indonesia. The Chandi Borobudur have 1460 narrative panels of reliefs which are distributed from the hidden foot to the fourth gallery. The 160 panels show various scenes of actions producing the corresponding results according to the Karmavibhanga(分別善惡報應經) text. Blameworthy activities with their purgatorial punishments and praiseworthy activities with their subsequent rewards are both shown. The 120 panels depict the biography of Buddha according to the Lalitavistara (方廣大莊嚴經) text. The 620 panels depict stories from Jatakas (本生譚) and Avadanas (譬喩經). The stories of 560 panels are based on Mahayayana (入法界品, 488 panels) and Bhadrucari (普賢行願讚, 72 panels) of Gandavyuha (華嚴經) text. In this study, among the 120 narrative reliefs which tell the life story of Buddha according to the Lalitavistara text in Chandi Borobudur, the images of Birth of Siddhārtha(誕生), The Great Departure (出家), Attaintment of Enlightenment (成道) and The First Sermon (初轉法輪) have been compared with the images of biography of Buddha showing in Ancient India, Gandhara and South India, and China. From a historical perspective of cultural exchange, Borobudur is very important site because it is located on the south route of transmission of Buddhism from India to South Asia, China, Korea and Japan. Study on the reliefs sculptured on the wall of Chandi Borobudur provide us information to understand the process of spreading and changes in styles of Buddhist arts.

  • PDF

Seismic Behavior Investigation on Blind Bolted CFST Frames with Precast SCWPs

  • Wang, Jingfeng;Shen, Qihan;Li, Beibei
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1666-1683
    • /
    • 2018
  • To explore seismic behavior of blind bolted concrete-filled steel tube (CFST) frames infilled with precast sandwich composite wall panels (SCWPs), a series tests of blind bolted square CFST frames with precast SCWPs under lateral low-cyclic loading were conducted. The influence of the type of wall concrete, wall-to-frame connection and steel brace setting, etc. on the hysteretic curves and failure modes of the type of composite structure was investigated. The seismic behavior of the blind bolted CFST frames with precast SCWPs was evaluated in terms of lateral load-displacement relation curves, strength and stiffness degradation, crack patterns of SCWPs, energy dissipation capacity and ductility. Then, a finite element (FE) analysis modeling using ABAQUS software was developed in considering the nonlinear material properties and complex components interaction. Comparison indicated that the FE analytical results coincided well with the test results. Both the experimental and numerical results indicated that setting the external precast SCWPs could heighten the load carrying capacities and rigidities of the blind bolted CFST frames by using reasonable connectors between frame and SCWPs. These experimental studies and FE analysis would enable improvement in the practical design of the SCWPs in fabricated CFST structure buildings.

Numerical formulation of P-I diagrams for blast damage prediction and safety assessment of RC panels

  • Mussa, Mohamed H.;Mutalib, Azrul A.;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.607-620
    • /
    • 2020
  • A numerical study is carried out to assess the dynamic response and damage level of one- and two-way reinforced concrete (RC) panels subjected to explosive loads by using finite element LS-DYNA software. The precision of the numerical models is validated with the previous experimental test. The calibrated models are used to conduct a series of parametric studies to evaluate the effects of panel wall dimensions, concrete strength, and steel reinforcement ratio on the blast-resistant capacity of the panel under various magnitudes of blast load. The results are used to develop pressure-impulse (P-I) diagrams corresponding to the damage levels defined according to UFC-3-340-02 manual. Empirical equations are proposed to easily construct the P-I diagrams of RC panels that can be efficiently used to assess its safety level against blast loads.

Nonlinear model of reinforced concrete frames retrofitted by in-filled HPFRCC walls

  • Cho, Chang-Geun;Ha, Gee-Joo;Kim, Yun-Yong
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.211-223
    • /
    • 2008
  • A number of studies have suggested that the use of high ductile and high shear materials, such as Engineered Cementitious Composites (ECC) and High Performance Fiber Reinforced Cementitious Composites (HPFRCC), significantly enhances the shear capacity of structural elements, even with/without shear reinforcements. The present study emphasizes the development of a nonlinear model of shear behaviour of a HPFRCC panel for application to the seismic retrofit of reinforced concrete buildings. To model the shear behaviour of HPFRCC panels, the original Modified Compression Field Theory (MCFT) for conventional reinforced concrete panels has been newly revised for reinforced HPFRCC panels, and is referred to here as the HPFRCC-MCFT model. A series of experiments was conducted to assess the shear behaviour of HPFRCC panels subjected to pure shear, and the proposed shear model has been verified through an experiment involving panel elements under pure shear. The proposed shear model of a HPFRCC panel has been applied to the prediction of seismic retrofitted reinforced concrete buildings with in-filled HPFRCC panels. In retrofitted structures, the in-filled HPFRCC element is regarded as a shear spring element of a low-rise shear wall ignoring the flexural response, and reinforced concrete elements for beam or beam-column member are modelled by a finite plastic hinge zone model. An experimental study of reinforced concrete frames with in-filled HPFRCC panels was also carried out and the analysis model was verified with correlation studies of experimental results.

Performance Evaluation on Static Loading and Cyclic Loading for Structural Insulated Panels (구조용단열패널의 정적가력과 반복가력 성능 평가)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 2013
  • Structural insulated panels, structurally performed panels consisting of a plastic insulation bonded between two structural panel facings, are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. In Korea, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to identify fundamental performance of both monotonic load and quasi static cyclic load for SIPs in shear wall application. Static test results showed that maximum load was 44.3kN, allowable shear load was 6.1kN/m, shear stiffness was 1.23 M N/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens : single panel and double panels. Cyclic test results, which were equivalent to static test results, showed that maximum load was 45.42kN, allowable shear load was 6.3kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. From performance of structural tests, it was recommended that the allowable shear load for panels was at least 6.1kN/m.

EVALUATION OF METHODOLOGY FOR AXISYMMETRIC SIMULATION OF RCCS IN VHTR (초고온가스로의 RCCS 해석을 위한 축대칭 모사 방법론 평가)

  • Kim, S.H.;Cho, B.H.;Tak, N.I.;Kim, M.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • RCCS is a passive safety-related system that removes the decay heat of VHTR when normal decay heat removal systems are in failure. Understanding thermo-hydraulics of RCCS is important to design a safer VHTR. RCCS consists of 292 cooling panels, which are placed in the reactor cavity. The layout of RCCS gives an idea that, for CFD simulations, cooling panels can be assumed to be one annulus tube. This assumption can reduce significantly the computational time, especially for the unsteady simulation. To simulate RCCS in an axisymmetric manner, three models were suggested and compared. Each model has (1) the same outer radius, (2) the same cross-sectional area (3) the same pressure drop, respectively, as the RCCS cooling panels. The steady-state simulation was conducted with these three models and the DO radiation model. It is found that over 90% of the heat from the outer wall of the reactor pressure vessel is transported to the RCCS by radiative heat transfer. The simulation with the third model, which has the same pressure drop as the design, estimates the closest wall temperature profiles to a thermo-hydraulic code, GAMMA+, result.

Effect of masonry infilled panels on the seismic performance of a R/C frames

  • Aknouche, Hassan;Airouche, Abdelhalim;Bechtoula, Hakim
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.329-348
    • /
    • 2019
  • The main objective of this experimental research was to investigate the Seismic performance of reinforced concrete frames infilled with perforated clay brick masonry wall of a type commonly used in Algeria. Four one story-one bay reinforced concrete infilled frames of half scale of an existing building were tested at the National Earthquake Engineering Research Center Laboratory, CGS, Algeria. The experiments were carried out under a combined constant vertical and reversed cyclic lateral loading simulating seismic action. This experimental program was performed in order to evaluate the effect and the contribution of the infill masonry wall on the lateral stiffness, strength, ductility and failure mode of the reinforced concrete frames. Numerical models were developed and calibrated using the experimental results to match the load-drift envelope curve of the considered specimens. These models were used as a bench mark to assess the effect of normalized axial load on the seismic performance of the RC frames with and without masonry panels. The main experimental and analytical results are presented in this paper.