Browse > Article
http://dx.doi.org/10.12989/sem.2020.75.5.607

Numerical formulation of P-I diagrams for blast damage prediction and safety assessment of RC panels  

Mussa, Mohamed H. (Department of Civil Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia)
Mutalib, Azrul A. (Department of Civil Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia)
Hao, Hong (Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University)
Publication Information
Structural Engineering and Mechanics / v.75, no.5, 2020 , pp. 607-620 More about this Journal
Abstract
A numerical study is carried out to assess the dynamic response and damage level of one- and two-way reinforced concrete (RC) panels subjected to explosive loads by using finite element LS-DYNA software. The precision of the numerical models is validated with the previous experimental test. The calibrated models are used to conduct a series of parametric studies to evaluate the effects of panel wall dimensions, concrete strength, and steel reinforcement ratio on the blast-resistant capacity of the panel under various magnitudes of blast load. The results are used to develop pressure-impulse (P-I) diagrams corresponding to the damage levels defined according to UFC-3-340-02 manual. Empirical equations are proposed to easily construct the P-I diagrams of RC panels that can be efficiently used to assess its safety level against blast loads.
Keywords
P-I curves; RC panels; blast load; numerical formulation; damage assessment;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Shi, Y., Hao, H. and Li, Z.-X. (2008), "Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads", Int. J. Impact Eng., 35(11), 1213-1227. https://doi.org/10.1016/j.ijimpeng.2007.09.001.   DOI
2 Shi, Y., Li, Z.-X. and Hao, H. (2009), "Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns", Struct. Eng. Mech., 32(2), 251-267. http://dx.doi.org/10.12989/sem.2009.32.2.251.   DOI
3 Shi, Y. and Stewart, M. G. (2015), "Spatial reliability analysis of explosive blast load damage to reinforced concrete columns", Struct. Saf., 53, 13-25. https://doi.org/10.1016/j.strusafe.2014.07.003.   DOI
4 Shope, R. (2007), "Comparisons of an alternative pressureimpulse (P-I) formulation with experimental and finite element results", The International Symposium on the Effects of Munitions with Structures (ISIEMS), Orlando, USA, November.
5 Sohn, J. M., Kim, S. J., Seong, D. J., Kim, B. J., Ha, Y. C., Seo, J. K. and Paik, J. K. (2014), "Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions", Struct. Eng. Mech., 51(5), 755-771. https://doi.org/10.12989/sem.2014.51.5.755.   DOI
6 Syed, Z. I., Mendis, P., Lam, N. and Ngo, T. (2006), "Concrete damage assessment for blast load using pressure-impulse diagrams", Proceedings of Annual Technical Conference of the Australian Earthquake Engineering Society, Canberra, Australia, November.
7 Teeling-Smith, R. and Nurick, G. (1991), "The deformation and tearing of thin circular plates subjected to impulsive loads", Int. J. Impact Eng., 11(1), 77-91. https://doi.org/10.1016/0734-743X(91)90032-B.   DOI
8 Alamatian, J. (2013), "New implicit higher order time integration for dynamic analysis", Struct. Eng. Mech., 48(5), 711-736. https://doi.org/10.12989/sem.2013.48.5.711.   DOI
9 Abbood, I. S., Mahmod, M., Hanoon, A. N., Jaafar, M. S. and Mussa, M. H. (2018), "Seismic response analysis of linked twin tall buildings with structural coupling", IJCIET, 9(11), 208-219.
10 UFC-3-340-02 (2008), Structures to resist the effects of accidental explosions, US Army Corps of Engineers, Naval Facilities Engineering Command; Washington DC, USA.
11 Wu, C. and Hao, H. (2005), "Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions", Int. J. Impact Eng., 31(6), 699-717. https://doi.org/10.1016/j.ijimpeng.2004.03.002.   DOI
12 Xia, Y., Wu, C., Zhang, F., Li, Z.-X. and Bennett, T. (2014), "Numerical analysis of foam-protected RC members under blast loads", Int. J. Prot. Struct., 5(4), 367-390. https://doi.org/10.1260%2F2041-4196.5.4.367.   DOI
13 Yonten, K., Manzari, M. T., Eskandarian, A. and Marzougui, D. (2002), "An evaluation of constitutive models of concrete in LSDyna finite element code", 15th ASCE Engineering Mechanics Conference, New York, USA, June.
14 Yu, R., Chen, L., Fang, Q., Yan, H. and Chen, G. (2019), "Generation of pressure-impulse diagrams for failure modes of RC columns subjected to blast loads", Eng. Failure Anal., 100, 520-535. https://doi.org/10.1016/j.engfailanal.2019.02.001.   DOI
15 Christian, A. and Chye, G.O. (2014), "Performance of fiber reinforced high-strength concrete with steel sandwich composite system as blast mitigation panel", Procedia Eng., 95, 150-157. https://doi.org/10.1016/j.proeng.2014.12.174.   DOI
16 Abedini, M., Mutalib, A. A., Raman, S. N., Akhlaghi, E., Mussa, M. H. and Ansari, M. (2017), "Numerical investigation on the non-linear response of reinforced concrete (RC) columns subjected to extreme dynamic loads", J. Asian Sci. Res., 7(4), 86. https://doi.org/10.18488/journal.2.2017.74.86.98.
17 Aghdamy, S., Wu, C. and Griffith, M. (2013), "Simulation of retrofitted unreinforced concrete masonry unit walls under blast loading", Int. J. Prot. Struct., 4(1), 21-44. https://doi.org/10.1260%2F2041-4196.4.1.21.   DOI
18 CEB-FIP, M. (1993), Design of Concrete Structures, British Standard Institution; London, United Kingdom.
19 Gebbeken, N. and Ruppert, M. (1999), "On the safety and reliability of high dynamic hydrocode simulations", Int. J. Numer. Meth. Eng., 46(6), 839-851. https://doi.org/10.1002/(SICI)1097-0207(19991030)46:6%3C839::AID-NME728%3E3.0.CO;2-R.   DOI
20 Ha, J. H., Yi, N. H., Choi, J. K. and Kim, J. (2011), "Experimental study on hybrid CFRP-PU strengthening effect on RC panels under blast loading", Compos. Struct., 93(8), 2070-2082. https://doi.org/10.1016/j.compstruct.2011.02.014.   DOI
21 Hou, X., Cao, S., Rong, Q. and Zheng, W. (2018), "A PI diagram approach for predicting failure modes of RPC one-way slabs subjected to blast loading", Int. J. Impact Eng., 120, 171-184. https://doi.org/10.1016/j.ijimpeng.2018.06.006.   DOI
22 Krajcinovic, D. (1972), "Clamped circular rigid-plastic plates subjected to central blast loading", Comput. Struct., 2(4), 487-496. https://doi.org/10.1016/0045-7949(72)90003-X.   DOI
23 Lin, X. and Zhang, Y. (2016), "Nonlinear finite element analysis of FRP-strengthened reinforced concrete panels under blast loads", Int. J. Comput. Methods, 13(04), 1641002. https://doi.org/10.1142/S0219876216410024.   DOI
24 Krauthammer, T., Astarlioglu, S., Blasko, J., Soh, T. and Ng, P. (2008), "Pressure-impulse diagrams for the behavior assessment of structural components", Int. J. Impact Eng., 35(8), 771-783. https://doi.org/10.1016/j.ijimpeng.2007.12.004.   DOI
25 Lee, H.K. and Kim, S.E. (2016), "Comparative assessment of impact resistance of SC and RC panels using finite element analysis", Prog. Nuclear Energy, 90, 105-121. https://doi.org/10.1016/j.pnucene.2016.03.002.   DOI
26 Lin, X., Zhang, Y. and Hazell, P.J. (2014), "Modelling the response of reinforced concrete panels under blast loading", Mater. Des., 56, 620-628. https://doi.org/10.1016/j.matdes.2013.11.069.   DOI
27 LSTC, L.D. (2012), Keyword Users Manual: Volume I, V971 R6. 0, Livermore, CA: Livermore Technology Software Corporation; USA.
28 Malvar, L.J., Crawford, J.E., Wesevich, J.W. and Simons, D. (1997), "A plasticity concrete material model for DYNA3D", Int. J. Impact Eng., 19(9-10), 847-873. https://doi.org/10.1016/S0734-743X(97)00023-7.   DOI
29 Malvar, L.J. (1998), "Review of static and dynamic properties of steel reinforcing bars", Mater. J., 95(5), 609-616.
30 Malvar, L.J. and Ross, C. A. (1998), "Review of strain rate effects for concrete in tension", ACI Mater. J., 95, 735-739.
31 Mendes, S. and Opat, H. (1973), "Tearing and shear failures in explosively loaded clamped beams", Exp. Mech., 13, 480-486.   DOI
32 Mussa, M. H., Mutalib, A. A., Hamid, R. and Raman, S. N. (2018), "Blast damage assessment of symmetrical box-shaped underground tunnel according to peak particle velocity (PPV) and single degree of freedom (SDOF) criteria", Symmetry, 10(5), 158. https://doi.org/10.3390/sym10050158.   DOI
33 Mussa, M.H., Mutalib, A.A., Hamid, R., Naidu, S.R., Radzi, N.A. M. and Abedini, M. (2017), "Assessment of damage to an underground box tunnel by a surface explosion", Tunn. Undergr. Space Technol., 66, 64-76. https://doi.org/10.1016/j.tust.2017.04.001.   DOI
34 Mussa, M. H., Mutalib, A. A., Hamid, R. and Raman, S. N. (2018), "Dynamic properties of high volume fly ash nanosilica (HVFANS) concrete subjected to combined effect of high strain rate and temperature", Lat. Am. J. Solids Struct., 15(1). https://doi.org/10.1590/1679-78254900.
35 Mussa, M. H. and Mutalib, A. A. (2018), "Effect of geometric parameters ($\beta$ and $\tau$) on behaviour of cold formed stainless steel tubular X-joints", Int. J. Steel Struct., 18(3), 821-830. https://doi.org/10.1007/s13296-018-0031-0.   DOI
36 Mussa, M. H., Abdulhadi, A. M., Abbood, I. S., Mutalib, A. A. and Yaseen, Z. M. (2020), "Late age dynamic strength of highvolume fly ash concrete with nano-silica and polypropylene fibres", Crystals, 10(4), 243. https://doi.org/10.3390/cryst10040243.   DOI
37 Muszynski, L. C. and Purcell, M. R. (2003), "Composite reinforcement to strengthen existing concrete structures against air blast", J. Composite Constr., 7(2), 93-97. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:2(93).   DOI
38 Mutalib, A. A. and Hao, H. (2011), "Development of PI diagrams for FRP strengthened RC columns", Int. J. Impact Eng., 38(5), 290-304. https://doi.org/10.1016/j.ijimpeng.2010.10.029.   DOI
39 Mutalib, A. A., Mussa, M. H. and Abdulghafoor, A. M. (2018), "Finite element analysis of composite plate girders with a corrugated web", J. Eng. Sci. Technol., 13(9), 2978-2994.
40 Mutalib, A. A., Mussa, M. H. and Abusal, K. M. (2018), "Numerical evaluation of concrete filled stainless steel tube for short columns subjected to axial compression load", J. Teknol., 80(2).
41 Mutalib, A. A., Mussa, M. H. and Hao, H. (2019), "Effect of CFRP strengthening properties with anchoring systems on PI diagrams of RC panels under blast loads", Constr. Build. Mater., 200, 648-663. https://doi.org/10.1016/j.conbuildmat.2018.12.169.   DOI
42 Mutalib, A. A., Mussa, M. H. and Taib, M. A. (2020), "Behaviour of prestressed box beam strengthened with CFRP under effect of strand snapping", GRAdEVINAR, 72(2), 103-113. https://doi.org/10.14256/JCE.2368.2018.
43 Ngo, T. D. (2005), "Behaviour of high strength concrete subject to impulsive loading", Ph.D. Dissertation, The University of Melbourne, Melbourne, Australia.
44 Ngo, T., Mendis, P., Gupta, A. and Ramsay, J. (2007), "Blast loading and blast effects on structures-an overview", Electron. J. Struct. Eng., 7(S1), 76-91.
45 Nurick, G. and Shave, G. (1996), "The deformation and rupture of blast loaded square plates", Int. J. Impact Eng., 18, 99-116.   DOI
46 Olson, M., Nurick, G. and Fagnan, J. (1993), "Deformation and rupture of blast loaded square plates-predictions and experiments", Int. J. Impact Eng., 13(2), 279-291. https://doi.org/10.1016/0734-743X(93)90097-Q   DOI
47 Oswald, C. and Marchand, K. (1994), Facility and Component Explosive Damage Assessment Program (FACEDAP): Theory manual, Southwest Research Institute for the Department of the Army; Omaha, USA.
48 Parlin, N. J., Davids, W. G., Nagy, E. and Cummins, T. (2014), "Dynamic response of lightweight wood-based flexible wall panels to blast and impulse loading", Constr. Build. Mater., 50, 237-245. https://doi.org/10.1016/j.conbuildmat.2013.09.046.   DOI
49 Saadun, A., Mutalib, A. A., Hamid, R. and Mussa, M. H. (2016), "Behaviour of polypropylene fiber reinforced concrete under dynamic impact load", J. Eng. Sci. Technol., 11(5), 684-693.
50 Riedel, W., Mayrhofer, C., Thoma, K. and Stolz, A. (2010), "Engineering and numerical tools for explosion protection of reinforced concrete", Int. J. Prot. Struct., 1(1), 85-101. https://doi.org/10.1260%2F2041-4196.1.1.85.   DOI
51 Scherbatiuk, K., Rattanawangcharoen, N., Pope, D. and Fowler, J. (2008), "Generation of a pressure-impulse diagram for a temporary soil wall using an analytical rigid-body rotation model", Int. J. Impact Eng., 35(6), 530-539. https://doi.org/10.1016/j.ijimpeng.2007.04.006.   DOI
52 Shen, J., Lu, G., Wang, Z. and Zhao, L. (2010), "Experiments on curved sandwich panels under blast loading", Int. J. Impact Eng., 37(9), 960-970. https://doi.org/10.1016/j.ijimpeng.2010.03.002.   DOI