• Title/Summary/Keyword: wall morphology

Search Result 213, Processing Time 0.026 seconds

Morphology and Characteristics of Floral Organ in Highbush Blueberry (Vaccinium corymbosum) Cultivars (하이부쉬 블루베리의 품종별 화기 특성 및 형태적 관찰)

  • Kim, Su Jin;Bae, Kang Soon;Koh, Sang-Wook;Kim, Ho Cheol;Kim, Tae-Choon
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.235-242
    • /
    • 2015
  • Morphology and characteristics of floral organ in highbush blueberry cultivars were studied to select suitable cultivars of highbush blueberry for domestic cultivation. The stamen consists an anther and a tape-like hairy filament with well-developed trichomes. When the anther was opened, the wall of anther was not dehiscent, and pollen grains were discharged into two tubes. Pollen was mature tetrad type without being separated after meiosis (Late March). The number of pollen granules per anther was 400~1,300, the germination rate was higher in the cultivars having many pollen grains. Pistil was composed of five carpels and a shipper without separate part. The number of ovules per ovary was 39~67, therefore, the coefficient of ranged from 11.6 to 31.0%. The seed pod formation by combination of ‘Bluejay’ and ‘Sharpblue’ was higher in the cross-pollination than in the self-pollination.

Analysis of Particle Morphology Change and Discrete Element Method (DEM) with Different Grinding Media in Metal-based Composite Fabrication Process Using Stirred Ball Mill (교반볼밀을 이용한 금속기반 복합재 제조공정에서 다른 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석)

  • Batjargal, Uyanga;Bor, Amgalan;Batchuluun, Ichinkhorloo;Lee, Jehyun;Choi, Heekyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.456-466
    • /
    • 2017
  • This work investigated the particle morphology change to difference in milling media in a metal based composite fabrication process using a stirred ball mill with ball behavior of DEM simulation. A simulation of the three dimensional motion of grinding media in the stirred ball mill for the research of grinding mechanism to clarify the force, kinetic energy, and medium velocity of grinding media were calculated. In addition, the rotational speed of the stirred ball mill was changed to the experimental conditions for the composite fabrication, and change of the input energy was also calculated while changing the ball material, the flow velocity, and the friction coefficient under the same conditions. As the rotating speed of the stirred ball mill increased, the impact energy between the grinding media to media, media to wall, and media and the stirrer increased quantitatively. Also, we could clearly analyze the change of the particle morphology under the same experimental conditions, and it was found that the ball behavior greatly influences in the particle morphology changes.

Characterization of Two GAS1 Genes and Their Effects on Expression and Secretion of Heterologous Protein Xylanase B in Kluyveromyces lactis

  • Lian, Zhao;Jiang, Jing-Bo;Chi, Shuang;Guan, Guo-Hua;Li, Ying;Li, Ji-Lun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.1977-1988
    • /
    • 2015
  • β-1,3-glucanosyltransferases play essential roles in cell wall biosynthesis in yeast. Kluyveromyces lactis has six putative β-1,3-glucanosyltransferase genes. KlGAS1-1 and KlGAS1-2 are homologs of Saccharomyces cerevisiae gene GAS1. RT-qPCR indicated the transcription level of KlGAS1-1 was significantly reduced while heterologous protein (thermostable xylanase B) secretion was enhanced during medium optimization. To evaluate if these two events were related, and to improve xylanase B secretion in K. lactis, we constructed KlGAS1-1 and KlGAS1-2 single deletion strains and double deletion strain, respectively. KlGAS1-1 gene deletion resulted in the highest xylanase B activity among the three mutants. Only the double deletion strain showed morphology similar to that of the GAS1 deletion mutant in S. cerevisiae. The two single deletion strains differed in terms of cell wall thickness and xylanase B secretion. Transcription levels of β-1,3-glucanosyltransferase genes and genes related to protein secretion and transport were assayed. The β-1,3-glucanosyltransferase genes displayed transcription complementation in the cell wall synthesis process. KlGAS1-1 and KlGAS1-2 affected transcription levels of secretion- and transport-related genes. Differences in protein secretion ratio among the three deletion strains were associated with changes of transcription levels of secretion- and transport-related genes. Our findings indicate that KlGAS1-1 deletion is an effective tool for enhancing industrial-scale heterologous protein secretion in K. lactis.

Inactivation of the Wall-Associated De-N-acetylase (PgdA) of Listeria monocytogenes Results in Greater Susceptibility of the Cells to Induced Autolysis

  • Popowska, Magdalena;Kusio, Monika;Szymanska, Paulina;Markiewicz, Zdzislaw
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.932-945
    • /
    • 2009
  • Several species of Gram-positive bacteria have cell wall peptidoglycan (syn. murein) in which not all of the sugar moieties are N-acetylated. This has recently been shown to be a secondary effect, caused by the action of a peptidoglycan N-acetylglucosamine deacetylase. We have found that the opportunistic pathogen Listeria monocytogenes is unusual in having three enzymes with such activity, two of which remain in the cytoplasm. Here, we examine the enzyme (PgdA) that crosses the cytoplasmic membrane and is localized in the cell wall. We purified a hexa-His-tagged form of PgdA to study its activity and constructed a mutant devoid of functional Lmo0415 (PgdA) protein. L. monocytogenes PgdA protein exhibited peptidoglycan N-acetylglucosamine deacetylase activity with natural substrates (peptidoglycan) from both L. monocytogenes and Escherichia coli as well as the peptidoglycan sugar chain component N-acetylglucosamine, but not with N-acetylmuramic acid. As was reported recently [6], inactivation of the structural gene was not lethal for L. monocytogenes nor did it affect growth rate or morphology of the cells. However, the pgdA mutant was more prone to autolysis induced by such agents as Triton X-100 and EDTA, and is more susceptible to the cationic antimicrobial peptides (CAMP) lysozyme and mutanolysin, using either peptidoglycan muramidases or autolysis-inducing agents. The pgdA mutant was also slightly more susceptible than the wild-type strain to the action of certain beta-lactam antibiotics. Our results indicate that protein PgdA plays a protective physiological role for listerial cells.

Evaluation of Eddy Current Signals from the Inner Wall Axial Cracks of Steam Generator Tubes (증기발생기 전열관의 내면 축방향 균열에 대한 ECT 특성 평가)

  • Choi, Myung-Sik;Hur, Do-Haeng;Lee, Doek-Hyun;Park, Jung-Am;Han, Jung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.501-509
    • /
    • 2001
  • For the enhancement of ECT reliability on the primary water stress corrosion cracks of nuclear steam generator tubes, of which the occurrence is on the increase, it is important to comprehend the signal characteristics on crack morphology and to select an appropriate probe type. In this paper, the sizing accuracy and the detectability for the inner wall axial cracks of tubes were quantitatively evaluated using the following specimens: the electric discharge machined notches and the corrosion cracks which were developed on the operating steam generator tubes. The difference of eddy current signal characteristics between pancake and axial coil were also Investigated. The results obtained from this study provide a useful information for more precise evaluation on the inner wall axial tracks oi stram generator tubes.

  • PDF

Characterization and Pore Structure of Ordered Mesoporous SBA-15 Silica by Aging Condition (숙성조건 의한 메조포러스 SBA-15 실리카의 기공구조와 특성)

  • Kim, Han-Ho;Park, Hyun;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.252-256
    • /
    • 2010
  • The study was done to change the morphology and pore size of SBA-15 silica, and the characteristics of SBA-15 silica were investigated with TG-DSC, XRD, SEM, TEM and N2 adsorption-desorption under changing aging conditions. SBA-15 silica having a 2D-hexagonal structure was synthesized and confirmed by SEM and TEM. The structure of mesoporus silica SBA-15 showed a pore having regularly formed hexagonal structure and a passage having a cylindrical shape. This result is in good agreement with the pore forming in XRD and cylindrical shape of the structure in $N_2$ adsorption-desorption isotherm. SBA-15 silica showed a large BET surface area of $603-698\;m^2/g$, a pore volume of $0.673-0.926\;cm^3/g$, a large pore diameter of 5.62-7.42 nm, and a thick pore wall of 3.31-4.37 nm. This result shows that as the aging temperature increases, the BET surface area, pore volume, and pore diameter increase but the pore wall thickness decreases. The BET surface areas in SM-2 and SM-3 are as large as $698\;m^2/g$. However, SM-2 has a large surface area and forms a thick pore wall, when the aging temperature is $100^{\circ}C$ and is synthesized into stable mesoporous SBA-15 silica.

A Study on the Development of Prediction System for Pipe Wall Thinning Caused by Liquid Droplet Impingement Erosion (액적충돌침식으로 인한 배관감육 예측체계 구축에 관한 연구)

  • Kim, Kyung-Hoon;Cho, Yun-Su;Hwang, Kyeong-Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • The most common pipe wall thinning degradation mechanisms that can occur in the steam and feedwater systems are FAC (Flow Acceleration Corrosion), cavitation, flashing, and LDIE (Liquid Droplet Impingement Erosion). Among those degradation mechanisms, FAC has been investigated by many laboratories and industries. Cavitation and flashing are also protected on the piping design phase. LDIE has mainly investigated in aviation industry and turbine blade manufactures. On the other hand, LDIE has been little studied in NPP (Nuclear Power Plant) industry. This paper presents the development of prediction system for pipe wall thinning caused by LDIE in terms of erosion rate based on air-water ratio and material. Experiment is conducted in 3 cases of air-water ratio 0.79, 1.00, and 1.72 using the three types of the materials of A106B, SS400, and A6061. The main control parameter is the air-water ratio which is defined as the volumetric ratio of water to air (0.79, 1.00, 1.72). The experiments were performed for 15 days, and the surface morphology and hardness of the materials were examined for every 5 days. Since the spraying velocity (v) of liquid droplets and their contact area ($A_c$) on specimens are changed according to the air-water ratio, we analyzed the behavior of LDIE for the materials. Finally, the prediction equations(i.e. erosion rate) for LDIE of the materials were determined in the range of the air-water ratio from 0 to 2%.

Characterization of starch and gum arabic-maltodextrin microparticles encapsulating acacia tannin extract and evaluation of their potential use in ruminant nutrition

  • Adejoro, Festus A.;Hassen, Abubeker;Thantsha, Mapitsi S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.977-987
    • /
    • 2019
  • Objective: The use of tannin extract and other phytochemicals as dietary additives in ruminants is becoming more popular due to their wide biological actions such as in methane mitigation, bypass of dietary protein, intestinal nematode control, among other uses. Unfortunately, some have strong astringency, low stability and bioavailability, and negatively affecting dry matter intake and digestibility. To circumvent these drawbacks, an effective delivery system may offer a promising approach to administer these extracts to the site where they are required. The objectives of this study were to encapsulate acacia tannin extract (ATE) with native starch and maltodextrin-gum arabic and to test the effect of encapsulation parameters on encapsulation efficiency, yield and morphology of the microparticles obtained as well as the effect on rumen in vitro gas production. Methods: The ATE was encapsulated with the wall materials, and the morphological features of freeze-dried microparticles were evaluated by scanning electron microscopy. The in vitro release pattern of microparticles in acetate buffer, simulating the rumen, and its effect on in vitro gas production was evaluated. Results: The morphological features revealed that maltodextrin/gum-arabic microparticles were irregular shaped, glossy and smaller, compared with those encapsulated with native starch, which were bigger, and more homogenous. Maltodextrin-gum arabic could be used up to 30% loading concentration compared with starch, which could not hold the core material beyond 15% loading capacity. Encapsulation efficiency ranged from $27.7%{\pm}6.4%$ to $48.8%{\pm}5.5%$ in starch and $56.1%{\pm}4.9%$ to $64.8%{\pm}2.8%$ in maltodextrin-gum arabic microparticles. Only a slight reduction in methane emission was recorded in encapsulated microparticles when compared with the samples containing only wall materials. Conclusion: Both encapsulated products exhibited the burst release pattern under the pH conditions and methane reduction associated with tannin was marginal. This is attributable to small loading percentages and therefore, other wall materials or encapsulation methods should be investigated.

Preparation and Properties of Poly($\varepsilon$-caprolactone) Nanocapsules Containing Phytoncide Oil by Emulsion-diffusion Method(1) (유화확산법을 이용한 피톤치드오일 함유 폴리입실론카프로락톤 나노캡슐의 제조와 성질(1))

  • Jeong, Cheon-Hee;Kim, Hea-In;Park, Soo-Min
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.114-116
    • /
    • 2008
  • Poly(${\varepsilon}$-caprolactone) nanocapsules(nanoPCL) containing phytoncide oil were synthesized by emulsion diffusion method using ethyl acetate as organic solvent. The influence of the degree of hydrolyzation of poly(vinyl acohol) used as an emulsion stabilizer, and the different weight ratio of core material to wall material on the particle size, morphology, and emulsion stability was investigated to design nanocapsules. The encapsulated nanoPCL were characterized by FT-IR spetrometry, Scanning electron microscope, Differential scanning calorimetry, and Thermogravimetry analysis, respectively.

  • PDF

Preparation of Polyurea Microcapsules Containing Phase Change Material and their Application on Fiber Composites (상전이물질을 함유한 폴리우레아 마이크로캡슐의 제조와 섬유복합소재에의 적용)

  • Kim, Hea-In;Jin, Xuan-Zhen;Choi, Hae-Wook;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.37-44
    • /
    • 2007
  • In this study, for textile use, the octadecane of phase change materials(PCM) was encapsulated in several micro-diameter shell which prevents leakage of the material during its liquid phase. Microencapsulated PCM(PM) was prepared with the different weight ratio of core material to wall material and by interfacial polymerization methods using polyurea as shell material. Phase stability for O/W emulsion of PCM and PVA aq. (PE) was evaluated by Turbiscan Lab. The capsule formation win identified using FT-IR. Physical properties of microcapsules including diameter, particle distribution, morphology were investigated. Thermal transport properties of suede treated with PM(SPM) were determined by KES-F7 system.