Browse > Article
http://dx.doi.org/10.3740/MRSK.2010.20.5.252

Characterization and Pore Structure of Ordered Mesoporous SBA-15 Silica by Aging Condition  

Kim, Han-Ho (Department of Advanced Materials Engineering, Kangwon National University)
Park, Hyun (Department of Advanced Materials Engineering, Kangwon National University)
Kim, Kyung-Nam (Department of Advanced Materials Engineering, Kangwon National University)
Publication Information
Korean Journal of Materials Research / v.20, no.5, 2010 , pp. 252-256 More about this Journal
Abstract
The study was done to change the morphology and pore size of SBA-15 silica, and the characteristics of SBA-15 silica were investigated with TG-DSC, XRD, SEM, TEM and N2 adsorption-desorption under changing aging conditions. SBA-15 silica having a 2D-hexagonal structure was synthesized and confirmed by SEM and TEM. The structure of mesoporus silica SBA-15 showed a pore having regularly formed hexagonal structure and a passage having a cylindrical shape. This result is in good agreement with the pore forming in XRD and cylindrical shape of the structure in $N_2$ adsorption-desorption isotherm. SBA-15 silica showed a large BET surface area of $603-698\;m^2/g$, a pore volume of $0.673-0.926\;cm^3/g$, a large pore diameter of 5.62-7.42 nm, and a thick pore wall of 3.31-4.37 nm. This result shows that as the aging temperature increases, the BET surface area, pore volume, and pore diameter increase but the pore wall thickness decreases. The BET surface areas in SM-2 and SM-3 are as large as $698\;m^2/g$. However, SM-2 has a large surface area and forms a thick pore wall, when the aging temperature is $100^{\circ}C$ and is synthesized into stable mesoporous SBA-15 silica.
Keywords
ordered mesoporous; silica; SBA-15; 2D-hexagonal; sol-gel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. A. Bagshaw and I. J. Bruce, Micro & Meso. Mat., 109, 199 (2007).
2 Q. Huo, D. I. Margolese and G. D. Stucky, Chem. Mater., 8, 1147 (1996).   DOI   ScienceOn
3 K. Northcott, H. Kokusen, Y. Komatsu and G. Stevens, Separa. Sci. & Tech., 41, 1829 (2006).   DOI   ScienceOn
4 V. Escax, E. Delahaye, M. I. Clerc, P. Beaunier, M. D. Appay and Davidson., Micro. & Meso. Mat., 102, 234 (2007).   DOI   ScienceOn
5 Q. Wei, L. Liu, Z. R. Nie, H. Q. Chen, Y. L. Wang, Q. Y. Li and J. X. Zou, Micro & Meso. Mat., 101, 381 (2007).   DOI   ScienceOn
6 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, J. Am. Chem. Soc., 114, 10834 (1992).   DOI
7 D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 120, 6024(1998).   DOI   ScienceOn
8 A. Firouzi, D. Kumar, LM. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J A. Zasadzinski, C. Glinka, J. Nicol, Science, 267, 1138 (1995).   DOI   ScienceOn
9 Z. Jin, X. Wang and X. Cui, Colloid. Surface. A: Physicochem. Eng. Aspect., 316, 27 (2008).   DOI   ScienceOn
10 F. Zhang, Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu and D. Zhao, J. Phy. Chem., B, 109, 8723 (2005).   DOI   ScienceOn
11 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 359, 710 (1992).   DOI
12 A. Corma, Chem. Rev., 97(6), 2373 (1997).   DOI   ScienceOn