Browse > Article
http://dx.doi.org/10.4014/jmb.1505.05058

Characterization of Two GAS1 Genes and Their Effects on Expression and Secretion of Heterologous Protein Xylanase B in Kluyveromyces lactis  

Lian, Zhao (State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University)
Jiang, Jing-Bo (State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University)
Chi, Shuang (State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University)
Guan, Guo-Hua (State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University)
Li, Ying (State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University)
Li, Ji-Lun (State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.12, 2015 , pp. 1977-1988 More about this Journal
Abstract
β-1,3-glucanosyltransferases play essential roles in cell wall biosynthesis in yeast. Kluyveromyces lactis has six putative β-1,3-glucanosyltransferase genes. KlGAS1-1 and KlGAS1-2 are homologs of Saccharomyces cerevisiae gene GAS1. RT-qPCR indicated the transcription level of KlGAS1-1 was significantly reduced while heterologous protein (thermostable xylanase B) secretion was enhanced during medium optimization. To evaluate if these two events were related, and to improve xylanase B secretion in K. lactis, we constructed KlGAS1-1 and KlGAS1-2 single deletion strains and double deletion strain, respectively. KlGAS1-1 gene deletion resulted in the highest xylanase B activity among the three mutants. Only the double deletion strain showed morphology similar to that of the GAS1 deletion mutant in S. cerevisiae. The two single deletion strains differed in terms of cell wall thickness and xylanase B secretion. Transcription levels of β-1,3-glucanosyltransferase genes and genes related to protein secretion and transport were assayed. The β-1,3-glucanosyltransferase genes displayed transcription complementation in the cell wall synthesis process. KlGAS1-1 and KlGAS1-2 affected transcription levels of secretion- and transport-related genes. Differences in protein secretion ratio among the three deletion strains were associated with changes of transcription levels of secretion- and transport-related genes. Our findings indicate that KlGAS1-1 deletion is an effective tool for enhancing industrial-scale heterologous protein secretion in K. lactis.
Keywords
Kluyveromyces lactis; β-1; 3-glucanosyltransferase; heterologous protein secretion; GAS1;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISS-MODEL workspace: a Web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.   DOI
2 Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723.   DOI
3 Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D. 2007. Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl. Environ. Microbiol. 73: 6499-6507.   DOI
4 Ferrer P, Diers I, Asenjo JA, Andrews BA. 1998. Yeast cell permeabilizing β-1,3-glucanases: a tool for the integration of downstream processes and metabolic engineering applications to yeast. Biotechnol. Bioeng. 58: 321-324.   DOI
5 Feng Z, Ren J, Zhang H, Zhang L. 2011. Disruption of PMR1 in Kluyveromyces lactis improves secretion of calf prochymosin. J. Sci. Food Agric. 91: 100-103.   DOI
6 Danilevich VN. 2002. A new approach to the isolation of genomic DNA from yeast and fungi preparation of DNA-containing cell envelopes and their use in PCR. Russ. J. Bioorg. Chem. 28: 136-146.   DOI
7 Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. 2007. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2: 2366-2382.   DOI
8 Cabib E, Arroyo J. 2013. How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat. Rev. Microbiol. 11: 648-655.   DOI
9 Bartkeviciute D, Sasnauskas K. 2004. Disruption of the MNN10 gene enhances protein secretion in Kluyveromyces lactis and Saccharomyces cerevisiae. FEMS Yeast Res. 4: 833-840.   DOI
10 Backhaus K, Heilmann CJ, Sorgo AG, Purschke G, de Koster CG, Klis FM, Heinisch JJ. 2010. A systematic study of the cell wall composition of Kluyveromyces lactis. Yeast 27: 647-660.   DOI
11 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408.   DOI
12 Liu B, Gong X, Chang SH, Yang YL, Song M, Duan DM, et al. 2009. Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J. Biotechnol. 143: 95-102.   DOI
13 Koch MR, Pillus L. 2009. The glucanosyltransferase Gas1 functions in transcriptional silencing. Proc. Natl. Acad. Sci. USA 106: 11224-11229.   DOI
14 Klis FM, Boorsma A, De Groot PW. 2006. Cell wall construction in Saccharomyces cerevisiae. Yeast 23: 185-202.   DOI
15 Henrissat B, Davies GJ. 2000. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 124: 1515-1519.   DOI
16 Kegel A, Martinez P, Carter SD, Astrom SU. 2006. Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res. 34: 1633-1645.   DOI
17 Jiang ZQ, Kobayashi A, Ahsan MM, Lite L, Kitaoka M, Hayashi K. 2001. Characterization of a thermostable family 10 endo-xylanase (XynB) from Thermotoga maritima that cleaves p-nitrophenyl-beta-D-xyloside. J. Biosci. Bioeng. 92: 423-428.   DOI
18 Idiris A, Tohda H, Kumagai H, Takegawa K. 2010. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl. Microbiol. Biotechnol. 86: 403-417.   DOI
19 Ha CW, Kim K, Chang YJ, Kim B, Huh WK. 2014. The β-1,3-glucanosyltransferase Gas1 regulates Sir2-mediated rDNA stability in Saccharomyces cerevisiae. Nucleic Acids Res. 42: 8486-8499.   DOI
20 Ragni E, Coluccio A, Rolli E, Rodriguez-Pena JM, Colasante G, Arroyo J, et al. 2007. GAS2 and GAS4, a pair of developmentally regulated genes required for spore wall assembly in Saccharomyces cerevisiae. Eukaryot. Cell 6: 302-316.   DOI
21 Popolo L, Vai M. 1999. The Gas1 glycoprotein, a putative wall polymer cross-linker. Biochim. Biophys. Acta 1426: 385-400.   DOI
22 Popolo L, Gualtieri T, Ragni E. 2001. The yeast cell-wall salvage pathway. Med. Mycol. 39: 111-121.   DOI
23 Passolunghi S, Riboldi L, Dato L, Porro D, Branduardi P. 2010. Cloning of the Zygosaccharomyces bailii GAS1 homologue and effect of cell wall engineering on protein secretory phenotype. Microb. Cell Fact. 9: 7.   DOI
24 Madinger CL, Sharma SS, Anton BP, Fields LG, Cushing ML, Canovas J, et al. 2009. The effect of carbon source on the secretome of Kluyveromyces lactis. Proteomics 9: 4744-4754.   DOI
25 Mouyna I, Monod M, Fontaine T, Henrissat B, Lechenne B, Latge JP. 2000. Identification of the catalytic residues of the first family of β(1-3)glucanosyltransferases identified in fungi. Biochem. J. 347: 741-747.
26 Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, et al. 2000. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J. Biol. Chem. 275: 14882-14889.   DOI
27 Marx H, Sauer M, Resina D, Vai M, Porro D, Valero F, et al. 2006. Cloning, disruption and protein secretory phenotype of the GAS1 homologue of Pichia pastoris. FEMS Microbiol. Lett. 264: 40-47.   DOI
28 Lodi T, Neglia B, Donnini C. 2005. Secretion of human serum albumin by Kluyveromyces lactis overexpressing KlPDI1 and KlERO1. Appl. Environ. Microbiol. 71: 4359-4363.   DOI
29 Vai M, Brambilla L, Orlandi I, Rota N, Ranzi BM, Alberghina L, Porro D. 2000. Improved secretion of native human insulin-like growth factor 1 from gas1 mutant Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 66: 5477-5479.   DOI
30 Uccelletti D, Farina F, Rufini S, Magnelli P, Abeijon C, Palleschi C. 2006. The Kluyveromyces lactis alpha1,6-mannosyltransferase KlOch1p is required for cell-wall organization and proper functioning of the secretory pathway. FEMS Yeast Res. 6: 449-457.   DOI
31 Uccelletti D, Anticoli S, Palleschi C. 2007. The apyrase KlYnd1p of Kluyveromyces lactis affects glycosylation, secretion, and cell wall properties. FEMS Yeast Res. 7: 731-739.   DOI
32 Sanchez M, Iglesias FJ, Santamaria C, Dominguez A. 1993. Transformation of Kluyveromyces lactis by electroporation. Appl. Environ. Microbiol. 59: 2087-2092.
33 Swaim CL, Anton BP, Sharma SS, Taron CH, Benner JS. 2008. Physical and computational analysis of the yeast Kluyveromyces lactis secreted proteome. Proteomics 8: 2714-2723.   DOI
34 Staben C, Jensen B, Singer M, Pollock J, Schechtman M, Kinsey J, Selker E. 1989. Use of a bacterial Hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa. Fungal Genetics Newsl. 36: 79-81.   DOI
35 Schwede T, Kopp J, Guex N, Peitsch MC. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385.   DOI
36 Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42: W320-W324.   DOI
37 Ribeiro O, Magalhaes F, Aguiar TQ, Wiebe MG, Penttila M, Domingues L. 2013. Random and direct mutagenesis to enhance protein secretion in Ashbya gossypii. Bioengineered 4: 322-331.   DOI
38 Zhang JX, Pan J, Guan GH, Li Y, Xue W, Tang GM, et al. 2008. Expression and high-yield production of extremely thermostable bacterial xylanase B in Aspergillus niger. Enzyme Microb. Technol. 43: 513-516.   DOI
39 Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41: 973-981.   DOI
40 Yin T, Miao LL, Guan FF, Wang GL, Peng Q, Li BX, et al. 2010. Optimized medium improves expression and secretion of extremely thermostable bacterial xylanase, XynB, in Kluyveromyces lactis. J. Microbiol. Biotechnol. 20: 1471-1480.   DOI
41 van Ooyen AJJ, Dekker P, Huang M, Olsthoorn MMA, Jacobs DI, Colussi PA, Taron CH. 2006. Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res. 6: 381-392.   DOI
42 Yang MH, Li Y, Guan GH, Jiang ZQ. 2005. High-level expression of an extreme-thermostable xylanase B from Thermotoga maritima MSB8 in Escherichia coli and Pichia pastoris. Acta Microbiol. Sin. 45: 236-240.
43 Wach A, Brachat A, Rebischung C, Philippsen P. 1997. Heterologous HIS3 Marker and GFP Reporter Modules for PCR - Targeting in Saccharomyces cerevisiae. Yeast. 13: 1065-1075.   DOI
44 Wach A. 1996. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12: 259-265.   DOI
45 Van den Berg JA, van der Laken KJ, van Ooyen AJ, Renniers TC, Rietveld K, Schaap A, et al. 1990. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Nat. Biotechnol. 8: 135-139.   DOI