• Title/Summary/Keyword: wall charge

Search Result 188, Processing Time 0.037 seconds

Decision of the Margin of the Sustain Voltage Based on the Wall-Charge Distribution (AC PDP의 벽전하 분포를 이용한 유지 펄스의 전압 마진 결정)

  • 하영석;권오경
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.77-80
    • /
    • 2000
  • This paper describes a new method to decide the margin for the sustain voltage of AC PDPs based on the wall-charge distribution. We model the discharge cell and measure the wall-charge when sustain pulses are applied to the AC PDP. The measured wall-charge distribution informs us of the voltage forming the maximum wall-charge which should be chosen as the sustain voltage.

  • PDF

Analysis of Wall-charge behavior using V-Q Lissajous' figure in AC-PDP driving (AC-PDP 구동에 있어서 V-Q Lissajous' Figure을 이용한 벽전하 거동분석)

  • Chung, Jong-Kab;Cho, Woo-Sung;Choi, Chang-Hun;Ju, Byeong-Keon;Park, Sun-Woo;Kim, Chul-Ju;Rho, Seung-Ryong;Kim, Young-Cho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.111-115
    • /
    • 2002
  • To understand the discharge characteristics in AC-PDP, it is necessary to study on the wall charge behavior. But, it is difficult to measure the wall charge directly. In this paper, the V-Q Lissajous' figure is used to measure the wall charge indirectly and analyze the wall charge behavior. With the V-Q Lissajous' figure, the discharge characteristics of AC-PDP are studied according to vary driving conditions, such as the frequency, pulse duty ratio, and rising & falling time. As a result, the V-Q Lissajous' figure is used to measure the discharge characteristics of the AC-PDP. It is confirmed that firing initial voltage and firing final voltage for discharge are effected by the aboved variables. Related with the wall voltage generation, it is thought that the difference of the slope at the V-Q Lissajous' figure is caused by charged ions inside the dielectric layer.

  • PDF

Study on the Address Discharge Characteristics for the Improvement of the Mis-firing Problem in AC PDP (AC PDP의 오방전 개선을 위한 어드레스 방전 특성 연구)

  • Jeon, Won-Jae;Kim, Dong-Hun;Lee, Seok-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1151-1156
    • /
    • 2009
  • Unstable sustain discharges can occur at the bottom cells of the panel at high temperature. To solve this problem, the wall charge variation during an address period was investigated. A test panel of 7.5 inch XGA level was used and one green cell was measured. In order to realize operating condition equal to that of the bottom cells of 50 inch panel, the addressing stress pulses are applied. It seems that the resultant wall charge loss during address period increased with increase of stress time, temperature, pressure and Xe %. Wall charge loss increases with potential difference between scan electrode and address electrode, therefore wall charge loss can be minimized by the increase of scan voltage during address period.

The characteristics of wall charge on the dependence of aging time in an AC Plasma Display Panel

  • Kim, Bhum-Joon;Cho, Hyung-Joon;Lee, Seung-Hun;Shin, Bhum-Jae;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.710-713
    • /
    • 2003
  • The wall charge is major factor to determine the discharge characteristics. The minimum sustain voltage related to the wall charge decay were investigated as a function of aging time in AC plasma display panel. For the long time scale, the wall charge decay time is dependent on the aging time. The inverse time scale of the wall charge decay has the maximum value at around 3 hours aging time and then fell down.

  • PDF

Observation of the Spatiotemporal Variation of Wall Charge Distribution during Reset Period in an ac POP cell

  • Jeong, Dong-Cheol;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.756-759
    • /
    • 2003
  • We measure the spatiotemporal wall charge distributions on sustain and address electrodes during reset period in an ac PDP cell using the longitudinal electro-optic amplitude modulation method. We apply several reset waveforms like as ramp, exponentially growing and high voltage pulse, and compare the wall charge characteristics on address electrode as well as sustain electrodes for each reset waveforms.

  • PDF

Improved PDP Driving Methods Based on Three Wall Charge States

  • Jeong, Ju-Young;Kim, Seok-I;Jung, Young-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.211-214
    • /
    • 2002
  • We present gray scale implementation method based on QMA driving technique. We clarified the mechanism of wall charge quantization through discharge current measurement. We used three wall charge states to implement gray scale. The cells would be one of fully-ON, half-On, and OFF states. We built a five sub-fields 243 level gray scale with sustain pulse count of 2, 6, 18, 54, and 162.

  • PDF

Improvement of Address Discharge Characteristics Using Wall Charge on Common Electrodes in AC PDP (플라즈마 디스플레이 패널에서 공통전극에서의 벽전하를 이용한 기입방전특성의 향상)

  • Cho, Byung-Gwon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.174-178
    • /
    • 2013
  • A modified driving waveform is proposed to improve the address discharge characteristics using wall charge on the common electrodes in plasma display panel. In the driving scheme of plasma display, after a reset period, the negative charge are accumulated on two front electrodes and positive wall charge are accumulated on the address electrode. As the address discharge during an address period is produced when the scan and address pulses are applied at the same time, negative charge on the scan electrodes and positive charge on the address electrodes are mainly used. On the other hand, as the voltage are only maintained without applying the waveform during an address period on the common electrodes, the wall charge is not used on the common electrodes. In this paper, the address discharge characteristics are investigated with changing pulse applying time and applied voltage amplitude on the common electrodes and consequently the producing time of an address discharge are shortened about 200 ns compared with the conventional driving waveform.

Measurement of Wall Voltage in Reset Discharge of AC PDP

  • Park, K.D.;Jung, Y.;Ryu, C.G.;Choi, J.H.;Kim, S.B.;Cho, T.S.;Oh, P.Y.;Jeon, S.H.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.722-725
    • /
    • 2003
  • In AC plasma display, it is very important to quantify the wall voltage induced by the wall charge accumulated on the dielectric surface. If we know the quantities of the wall voltage in each period of every sequence; reset period, address period and sustain period, then it helps us to design the optimal driving waveform for high efficiency plasma display. We develop a new method to measure the wall voltage with VDS (Versatile Driving Simulator) system. From this method the wall voltage induced by a wall charge profiles just after the reset discharge of every cells in plasma display panel can be investigated and analyzed successfully. It is noted that the wall voltage profiles are influenced by the space charge and then they are stabilized as time goes by. It is also noted that both the remaining wall charge at the previous sequence and space charges contribute to wall voltage quantities just after the reset discharge. It is noted that the wall charges contribute dominantly after a few hundreds microseconds, while the space charges have been decayed within 100 ${\mu}s$ just after the reset discharge.

  • PDF

Physical protection system vulnerability assessment of a small nuclear research reactor due to TNT-shaped charge impact on its reinforced concrete wall

  • Moo, Jee Hoon;Chirayath, Sunil S.;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2135-2146
    • /
    • 2022
  • A nuclear energy facility is one of the most critical facilities to be safely protected during and after operation because the physical destruction of its barriers by an external attack could release radioactivity into the environment and can cause harmful effects. The barrier walls of nuclear energy facilities should be sufficiently robust to protect essential facilities from external attack or sabotage. Physical protection system (PPS) vulnerability assessment of a typical small nuclear research reactor was carried out by simulating an external attack with a tri-nitro toluene (TNT) shaped charge and results are presented. The reinforced concrete (RC) barrier wall of the research reactor located at a distance of 50 m from a TNT-shaped charge was the target of external attack. For the purpose of the impact assessment of the RC barrier wall, a finite element method (FEM) is utilized to simulate the destruction condition. The study results showed that a hole-size of diameter 342 mm at the front side and 364 mm at the back side was created on the RC barrier wall as a result of a 143.35 kg TNT-shaped charge. This aperture would be large enough to let at least one person can pass through at a time. For the purpose of the PPS vulnerability assessment, an Estimate of Adversary Sequence Interruption (EASI) model was used, which enabled the determination of most vulnerable path to the target with a probability of interruption equal to 0.43. The study showed that the RC barrier wall is vulnerable to a TNT-shaped charge impact, which could in turn reduce the effectiveness of the PPS.

Influence of reset pulse form on electrical characteristics in AC-PDP

  • Cho, T.S.;Ko, J.J.;Lee, C.W.;Cho, G.S.;Choi, E.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.159-161
    • /
    • 2000
  • After the square type reset pulse, the condition of remaining wall charge has been experimentally investigated in AC-PDP with VDS (Versatile Driving Simulator) system, in which arbitrary driving waveform and sequence can be used. After the self-discharge process, almost wall charges are eliminated. But some wall charges are not and its quantity is dependent on the voltage of the reset pulse. When the voltage of the reset pulse is growing, its quantity is decreased. But if the voltage of the reset pulse is above 300V, the wall voltage due to remaining wall charge is constant and its value is found out 6V. Also it is found that its polarity is always same with the one made by the reset pulse. It means that the polarity is not changed by the self-discharge.

  • PDF