• Title/Summary/Keyword: wafers

Search Result 945, Processing Time 0.023 seconds

Solution-processed Dielectric and Quantum Dot Thin Films for Electronic and Photonic Applications

  • Jeong, Hyeon-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.37-37
    • /
    • 2010
  • Silicate-silsesquioxane or siloxane-silsesquioxane hybrid thin films are strong candidates as matrix materials for ultra low dielectric constant (low-k) thin films. We synthesized the silicate-silsesquioxane hybrid resins from tetraethoxyorthosilicate (TEOS) and methyltrimethoxysilane (MTMS) through hydrolysis and condensation polymerization by changing their molar ratios ([TEOS]:[MTMS] = 7:3, 5:5, and 3:7), spin-coating on Si(100) wafers. In the case of [TEOS]:[MTMS] 7:3, the dielectric permittivity value of the resultant thin film was measured at 4.30, exceeding that of the thermal oxide (3.9). This high value was thought to be due to Si-OH groups inside the film and more extensive studies were performed in terms of electronic, ionic, and orientational polarizations using Debye equation. The relationship between the mechanical properties and the synthetic conditions of the silicate-silsesquioxane precursors was also investigated. The synthetic conditions of the low-k films have to be chosen to meet both the low orientational polarization and high mechanical properties requirements. In addition, we have investigated a new solution-based approach to the synthesis of semiconducting chalcogenide films for use in thin-film transistor (TFT) devices, in an attempt to develop a simple and robust solution process for the synthesis of inorganic semiconductors. Our material design strategy is to use a sol-gel reaction to carry out the deposition of a spin-coated CdS film, which can then be converted to a xerogel material. These devices were found to exhibit n-channel TFT characteristics with an excellent field-effect mobility (a saturation mobility of ${\sim}\;48\;cm^2V^{-1}s^{-1}$) and low voltage operation (< 5 V). These results show that these semiconducting thin film materials can be used in low-cost and high-performance printable electronics.

  • PDF

The Flexural Strengths of Silicon Substrates with Various Surface Morphologies for Silicon Solar Cells (결정질 실리콘 태양전지용 실리콘 기판의 표면 미세구조에 따른 곡강도 특성)

  • Lee, Joon-Sung;Kwon, Soon-Woo;Park, Ha-Young;Kim, Young-Do;Kim, Hyeong-Jun;Lim, Hee-Jin;Yoon, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • The influence of various surface morphologies on the mechanical strength of silicon substrates was investigated in this study. The yield for the solar cell industry is mainly related to the fracturing of silicon wafers during the manufacturing process. The flexural strengths of silicon substrates were influenced by the density of the pyramids as well as by the size and the rounded surface of the pyramids. To characterize and optimize the relevant texturing process in terms of mechanical stability and the fabrication yield, the mechanical properties of textured silicon substrates were investigated to optimize the size and morphology of random pyramids. Several types of silicon substrates were studied, including the planar type, a textured surface with large and small pyramids, and a textured surface with rounded pyramids. The surface morphology and a cross-section of the as-textured and fractured silicon substrates were investigated by scanning electron microscopy.

A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho Sang-Hyun;Youn Sung-Won;Kang Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

Effect of Toughness Index of Diamond Abrasives on Cutting Performance in Wire Sawing Process (와이어쏘 공정에서 다이아몬드 입자의 인성지수가 절단 성능에 미치는 영향)

  • Kim, Do-Yeon;Lee, Tae-Kyung;Kim, Hyoung-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.675-682
    • /
    • 2020
  • Multi-wire sawing is the prominent technology employed to cut hard material ingots into wafers. This paper aimed to research the effect of diamond toughness index on the cutting performance of electroplated diamond wire. Three different toughness index of diamond abrasives were used to manufacture electroplated diamond wires. The cutting performance of electroplated diamond wire is verified through experiments, in which sapphire ingot are cut using single wire sawing machine. A single wire saw for constant load slicing is developed for the cutting performance evaluation of electroplated diamond wire. Choosing the cutting depth, total cutting depth, cutting force and wear of electroplated diamond wires as evaluation parameters, the performance of electroplated diamond wire is evaluated. The results of this study showed that there was a significant direct relationship between the toughness index of diamond abrasives and the cutting performance. Results demonstrated that diamond abrasive with a high toughness index showed higher cutting performance. However, all diamond abrasives showed similar cutting performance under low load conditions. The results of this paper are useful for the development of cutting large diameter ingots and cutting high hardness ingots at high speed.

Optimization of Thermal Deformation in Probe Card (프로브 카드의 열변형 최적화)

  • Chang, Yong-Hoon;Yin, Jeong-Je;Suh, Yong-S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4121-4128
    • /
    • 2010
  • A probe card is used in testing semiconductor wafers. It must maintain a precise location tolerance for a fine pitch due to highly densified chips. However, high heat transferred from its lower chuck causes thermal deformations of the probe card. Vertical deformation due to the heat will bring contact problems to the pins in the probe card, while horizontal deformation will cause positional inaccuracies. Therefore, probe cards must be designed with proper materials and structures so that the thermal deformations are within allowable tolerances. In this paper, heat transfer analyses under realistic loading conditions are simulated using ANSYS$^{TM}$ finite element analysis program. Thermal deformations are calculated based on steady-state temperature gradients, and an optimal structure of the probe card is proposed by adjusting a set of relevant design parameters so that the deformations are minimized.

CORRELATION BETWEEN BIS-GMA : TEGDMA RATIO AND DEGREE OF CONVERSION IN VARIOUS LAYERS OF COMPOSITE AFTER ADDITIONAL HEAT CURING (수종 복합레진 내의 bis-GMA와 TEGDMA의 구성비가 레진 인레이 법에 의한 부가적 열처리시 복합레진의 표면 및 내부의 중합률 변화에 미치는 영향)

  • Park, Seong-Ho;Chung, Chan-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.642-651
    • /
    • 1996
  • The purpose of this study was to evaluate the relationship between monomer compositions and the changes in the degree of conversion in the various layers of composites after additional heat curing. Four types of composites and 3 types of inlay ovens were used in this study. Composite was placed in a 4-mm thick teflon mold, and light cured from the top for 60 seconds. Ten samples were prepared for each composite ; 5 of these were additionally heat cured in an inlay oven as the manufacturer recommended. After light curing or light and heat curing, the samples were sectioned into four parts and assigned to groups A, B, C, or D according to their distance from the light source. These sections were then thinned to 50-$70{\mu}m$, and these wafers were analyzed with a Fourier Transform Infrared Spectrometer(FI-IR) to determine the degree of conversion. A standard baseline technique was used to calculate the degree of conversion. $^{13}C$ NMR spectra of bis-GMA, TEGDMA and bis-EMA, were acquired using a Varian Gemini spectrometer operated at 200 MHz. $CDCl_3$ solvent was used for qualitative analysis. The degree of conversion was affected by bis-GMA : TEGDMA ratio but it seemed to be also affected by other factors. When the composites were heat cured, significant increases in the degree of conversion were noted throughout the samples, but the amount of increase differed between materials. Thus, clinical performance of a heat-treated composite inlay may be different depending on materials.

  • PDF

Characteristics of Al Films Prepared by Oblique Angle Deposition (빗각 증착으로 제조한 Al 박막의 특성)

  • Park, Hye-Sun;Yang, Ji-Hoon;Jung, Jae-Hun;Song, Min-A;Jeong, Jae-In
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.3
    • /
    • pp.111-116
    • /
    • 2012
  • Oblique angle deposition (OAD) is a physical vapor deposition method which utilizes non-normal angles between the substrate and the vaporizing source. It has been known that tilting the substrate changes the properties of the film deposited on it, which was thought to be a result of morphological change of the film. In this study, OAD has been applied to prepare single and multilayer Al films by magnetron sputtering. The magnetron sputtering source of 4 inch diameter was used to deposit the films. Al films have been deposited on Si wafers and cold-rolled steel sheets. The multilayer films were prepared by changing the tilting angle upside down at each layer interval, which means that when the first layer was deposited at an angle of $+45^{\circ}$, the second layer was deposited at an angle of $-45^{\circ}$, and vice versa. The microstructure, surface roughness and reflectance of the films were investigated using a scanning electron microscope, a surface profiler and a spectrophotometer, respectively. The corrosion resistance was measured and compared using the salt spray test. The single layer film prepared at an oblique angle of $60^{\circ}$ prepared at other angles. However, for the multilayer films, the film prepared at an oblique angle of $45^{\circ}$ showed the most compact and featureless structure. The multilayer films were found to exhibit higher corrosion resistance than the single layer films.

Study of the Diffusion of Phosphorus Dependent on Temperatures for Selective Emitter Doping Process of Atmospheric Pressure Plasma (대기압 플라즈마의 선택적 도핑 공정에서 온도에 의한 인(Phosphorus)의 확산연구)

  • Kim, Sang Hun;Yun, Myoung Soo;Park, Jong In;Koo, Je Huan;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi-Chung
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.5
    • /
    • pp.227-232
    • /
    • 2014
  • In this study, we propose the application of doping process technology for atmospheric pressure plasma. The plasma treatment means the wafer is warmed via resistance heating from current paths. These paths are induced by the surface charge density in the presence of illuminating Argon atmospheric plasmas. Furthermore, it is investigated on the high-concentration doping to a selective partial region in P type solar cell wafer. It is identified that diffusion of impurities is related to the wafer temperature. For the fixed plasma treatment time, plasma currents were set with 40, 70, 120 mA. For the processing time, IR(Infra-Red) images are analyzed via a camera dependent on the temperature of the P type wafer. Phosphorus concentrations are also analyzed through SIMS profiles from doped wafer. According to the analysis for doping process, as applied plasma currents increase, so the doping depth becomes deeper. As the junction depth is deeper, so the surface resistance is to be lowered. In addition, the surface charge density has a tendency inversely proportional to the initial phosphorus concentration. Overall, when the plasma current increases, then it becomes higher temperatures in wafer. It is shown that the diffusion of the impurity is critically dependent on the temperature of wafers.

Effect of BOE Wet Etching on Interfacial Characteristics of Cu-Cu Pattern Direct Bonds for 3D-IC Integrations (3차원 소자 적층을 위한 BOE 습식 식각에 따른 Cu-Cu 패턴 접합 특성 평가)

  • Park, Jong-Myeong;Kim, Su-Hyeong;Kim, Sarah Eun-Kyung;Park, Young-Bae
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.26-31
    • /
    • 2012
  • Three-dimensional integrated circuit (3D IC) technology has become increasingly important due to the demand for high system performance and functionality. We have evaluated the effect of Buffered oxide etch (BOE) on the interfacial bonding strength of Cu-Cu pattern direct bonding. X-ray photoelectron spectroscopy (XPS) analysis of Cu surface revealed that Cu surface oxide layer was partially removed by BOE 2min. Two 8-inch Cu pattern wafers were bonded at $400^{\circ}C$ via the thermo-compression method. The interfacial adhesion energy of Cu-Cu bonding was quantitatively measured by the four-point bending method. After BOE 2min wet etching, the measured interfacial adhesion energies of pattern density for 0.06, 0.09, and 0.23 were $4.52J/m^2$, $5.06J/m^2$ and $3.42J/m^2$, respectively, which were lower than $5J/m^2$. Therefore, the effective removal of Cu surface oxide is critical to have reliable bonding quality of Cu pattern direct bonds.

Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties (Si 도핑이 InAs 자기조립 양자점 적외선 소자 특성에 미치는 효과)

  • Seo, Dong-Bum;Hwang, Je-hwan;Oh, Boram;Kim, Jun Oh;Lee, Sang Jun;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.542-546
    • /
    • 2019
  • We investigate the characteristics of self-assembled quantum dot infrared photodetectors(QDIPs) based on doping level. Two kinds of QDIP samples are prepared using molecular beam epitaxy : $n^+-i(QD)-n^+$ QDIP with undoped quantum dot(QD) active region and $n^+-n^-(QD)-n^+$ QDIP containing Si direct doped QDs. InAs QDIPs were grown on semi-insulating GaAs (100) wafers by molecular-beam epitaxy. Both top and bottom contact GaAs layer are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown by two-monolayer of InAs deposition and capped by InGaAs layer. For the $n^+-n^-(QD)-n^+$ structure, Si dopant is directly doped in InAs QD at $2{\times}10^{17}/cm^3$. Undoped and doped QDIPs show a photoresponse peak at about $8.3{\mu}m$, ranging from $6{\sim}10{\mu}m$ at 10 K. The intensity of the doped QDIP photoresponse is higher than that of the undoped QDIP on same temperature. Undoped QDIP yields a photoresponse of up to 50 K, whereas doped QDIP has a response of up to 30 K only. This result suggests that the doping level of QDs should be appropriately determined by compromising between photoresponsivity and operating temperature.