• 제목/요약/키워드: wafer-scale replication

검색결과 9건 처리시간 0.025초

엠보싱 공법에 의한 카메라 모듈용 광학렌즈 성형기법에 대한 연구 (Fabrication of the Imaging Lens for Mobile Camera using Embossing Method)

  • 이청희;진영수;노정은;김성화;장인철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.79-83
    • /
    • 2007
  • We have developed a compact and cost-effective camera module on the basis of wafer-scale replication technology. A multiple-layered structure of several aspheric lenses in a mobile camera module is first assembled by bonding multiple glass-wafers on which 2-dimensional replica arrays of identical aspheric lenses are UV-embossed, followed by dicing the stacked wafers and packaging them with image sensor chips. We have demonstrated a VGA camera module fabricated by the wafer-scale replication processing with various UV-curable polymers having refractive indices between 1.4 and 1.6, and with three different glass-wafers of which both surfaces are embossed as aspheric lenses having 200 um sag-height and aspheric-coefficients of lens polynomials up to tenth-order. We have found that precise compensation in material shrinkage of the polymer materials is one of the most technical challenges, in order to achieve a higher resolution in wafer-scaled lenses for mobile camera modules.

  • PDF

Biomimetically Engineered Polymeric Surfaces for Micro-scale Tribology

  • Singh R. Arvind;Kim Hong-Joon;Kong Ho-Sung;Yoon Eui-Sung
    • KSTLE International Journal
    • /
    • 제7권1호
    • /
    • pp.14-17
    • /
    • 2006
  • In this paper, we report on the replication of surface topography of natural leaf of Lotus onto thin polymeric films using a capillarity-directed soft lithographic technique. PDMS molds were used to replicate the surface. The replication was carried out on poly(methyl methacrylate) (PMMA) film coated on silicon wafer. The patterns so obtained were investigated for their friction properties at micro-scale using a ball-on-flat type micro-tribo tester, under reciprocating motion. Soda lime balls (1 mm diameter) were used as counterface sliders. Friction tests were conducted at a constant applied normal load of $3000{\mu}N$ and speed of 1mm/s. All experiments were conducted at ambient temperature ($24{\pm}1^{\circ}C$) and relative humidity ($45{\pm}5%$). Results showed that the patterned samples exhibited superior tribological properties when compared to the silicon wafer and non patterned sample (PMMA thin film). The reduced real area of contact projected by the surfaces was the main reason for their enhanced friction property.

SPL과 소프트 리소그래피를 이용한 나노 구조물 형성 연구 (Fabrication of Nanoscale Structures using SPL and Soft Lithography)

  • 류진화;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.138-145
    • /
    • 2006
  • A nanopatterning technique was proposed and demonstrated for low cost and mass productive process using the scanning probe lithography (SPL) and soft lithography. The nanometer scale structure is fabricated by the localized generation of oxide patterning on the H-passivated (100) silicon wafer, and soft lithography was performed to replicate of nanometer scale structures. Both height and width of the silicon oxidation is linear with the applied voltagein SPL, but the growth of width is more sensitive than that of height. The structure below 100 nm was fabricated using HF treatment. To overcome the structure height limitation, aqueous KOH orientation-dependent etching was performed on the H-passivated (100) silicon wafer. Soft lithography is also performed for the master replication process. Elastomeric stamp is fabricated by the replica molding technique with ultrasonic vibration. We showed that the elastomeric stamp with the depth of 60 nm and the width of 428 nm was acquired using the original master by SPL process.

초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발 (Fabrication of Diffractive Optical Element for Objective Lens of Small form Factor Data Storage Device)

  • 배형대;임지석;정기봉;한정원;유준모;박노철;강신일
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.3-8
    • /
    • 2006
  • The demand fer small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased by using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable fur mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-replication process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the surface profiles of master, mold and molded pattern were measured by optical scanning profiler. The geometrical deviation between the master and the molded DOE was less than $0.1{\mu}m$. The diffraction efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

Particle Replication In Non-Wetting Templates (PRINT) 방법을 이용한 약물 및 유전자 전달체의 제작 (Fabrication of Non Viral Vector for Drug and Gene Delivery using Particle Replication In Non-Wetting Templates (PRINT) Technique)

  • 박지영;;;임종성
    • Korean Chemical Engineering Research
    • /
    • 제45권5호
    • /
    • pp.493-499
    • /
    • 2007
  • 본 연구에서는 UV photo-lithography 방식의 particle replication in non-wetting templates(PRINT) 법을 이용하여 약물 전달에 운반체로 사용되는 $3{\mu}m{\times}3{\mu}m{\times}2{\mu}m$ 사이즈의 균일한 고분자 하이드로젤 입자를 제조하였다. 몰드(mold)와 기재(substrate)는 PRINT 방식을 통하여 탄성을 지닌 perfluoropolyethers(PFPE)로 제작하였으며 이를 반복적으로 사용할 수 있도록 하였다. 제작된 입자는 점착성이 있는 수용성 고분자를 이용하여 회수하였다. 입자의 주요 성분은 생분해성 고분자인 poly(ethylene glycol) diacrylate(PEG-diA)이며, 세포 uptake에 적합하도록 aminoethylacrylate(AEM)와 2-acryloxyethyltrimethyl ammonium chloride(AETMAC)를 첨가하였다. 본 연구를 통해 균일하고 원하는 크기의 생체분해성 고분자 입자를 제작하는 PRINT 기술이 약물 전달 및 유전자 전달에 필요한 수송체인 비바이럴 벡터를 제작하기 위한 효과적인 기술임을 제시하였다.

초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발 (Fabrication of diffractive optical element for objective lens of small form factor data storage device)

  • 배형대;임지석;정기봉;한정원;유준모;박노철;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.35-40
    • /
    • 2005
  • The demand for small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable for mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-molding process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the shapes of master, mold and molded pattern were measured by optical scanning profiler. The deviation between the master and the molded DOE was less than 0.1um. The efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

  • PDF

마이크로 UV 성형을 통한 초소형 광픽업용 마이크로 미러 어레이 제작 (Fabrication of micro mirror array for small form factor optical pick-up by micro UV-molding)

  • 최용;임지석;김석민;손진승;김해성;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.47-50
    • /
    • 2005
  • In this study, micro mirror array for small form factor optical pick-up was replicated by micro UV-molding. First, mold for micro mirror array was fabricated using micromachining. Also, to analyze the characteristics of the surface quality, flatness of replicated mirror surface were measured by white light scanning inteferometry system. The results show that the micro mirror array with a sufficient surface quality can be obtained by polymer replication process.

  • PDF

실험 계획법을 이용한 점착방지막용 플라즈마 증착 공정변수의 최적화 연구 (Optimizing the Plasma Deposition Process Parameters of Antistiction Layers Using a DOE (Design of Experiment))

  • 차남구;박창화;조민수;박진구;정준호;이응숙
    • 한국재료학회지
    • /
    • 제15권11호
    • /
    • pp.705-710
    • /
    • 2005
  • NIL (nanoimprint lithography) technique has demonstrated a high potential for wafer size definition of nanometer as well as micrometer size patterns. During the replication process by NIL, the stiction between the stamp and the polymer is one of major problems. This stiction problem is moi·e important in small sized patterns. An antistiction layer prevents this stiction ana insures a clean demolding process. In this paper, we were using a TCP (transfer coupled plasma) equipment and $C_4F_8$ as a precursor to make a Teflon-like antistiction layer. This antistiction layer was deposited on a 6 inch silicon wafer to have nanometer scale thicknesses. The thickness of deposited antistiction layer was measured by ellipsometry. To optimize the process factor such as table height (TH), substrate temperature (ST), working pressure (WP) and plasma power (PP), we were using a design of experimental (DOE) method. The table of full factorial arrays was set by the 4 factors and 2 levels. Using this table, experiments were organized to achieve 2 responses such as deposition rate and non-uniformity. It was investigated that the main effects and interaction effects between parameters. Deposition rate was in proportion to table height, working pressure and plasma power. Non-uniformity was in proportion to substrate temperature and working pressure. Using a response optimization, we were able to get the optimized deposition condition at desired deposition rate and an experimental deposition rate showed similar results.