• 제목/요약/키워드: wafer grinding technology

검색결과 27건 처리시간 0.023초

실리콘 웨이퍼 연삭의 형상 시뮬레이션 (Profile Simulation in Mono-crystalline Silicon Wafer Grinding)

  • 김상철;이상직;정해도;최헌종;이석우
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.26-33
    • /
    • 2004
  • Ultra precision grinding technology has been developed from the refinement of the abrasive, the development of high stiffness equipment and grinding skill. The conventional wafering process which consists of lapping, etching, 1 st, 2nd and 3rd polishing has been changed to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Furthermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focuses on the flatness of the ground wafer. Generally, the ground wafer has concave pronto because of the difference of wheel path density, grinding temperature and elastic deformation of the equipment. Wafer tilting is applied to avoid non-uniform material removal. Through the geometric analysis of wafer grinding process, the profile of the ground wafer is predicted by the development of profile simulator.

연삭시스템의 최적연삭가공조건 (The Optimum Grinding Condition Selection of Grinding System)

  • 이석우;최영재;허남환;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.563-564
    • /
    • 2006
  • In silicon wafer manufacturing process, the grinding process has been adopted to improve the flatness of water. The grinding of wafer is usually used by the infeed grinding machine. Grinding conditions are spindle speed, feed speed, rotation speed, grinding stone etc. But grinding condition selection and analysis is so difficult in grinding machine. In the intelligent grinding system based on knowledge many researchers have studied expert system, neural network, fuzzy etc. In this paper we deal grinding condition selection method, Taguchi method and Genetic Analysis.

  • PDF

웨이퍼 연삭 가공 기술의 동향 및 가공 정밀도 향상에 관한 연구 (The Trend of wafer Grinding Technology and Improvement of Machining Accuracy)

  • 안대균;황징연;이재석;이용한;하상백;이상직
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.20-23
    • /
    • 2002
  • In silicon wafer manufacturing process, the grinding process has been adopted to improve the quality of wafer such as flatness, roughness and so on. This paper describes the effect of grinding process on the surface quality of wafer. The experiments are carried out by high precision in fred grinder with air bearing spindle. The relationship between the inclination of chuck table and the flatness of wafer is investigated, and the effect of grinding conditions including wheel speed, table speed, and feed rate on damage depth and roughness of wafer is also investigated. The experimental results show that there is close relationship between the inclination of the chuck table and the flatness of wafer, and the grinding conditions within this paper little affect the flatness of wafer and relatively high affect the damage depth of wafer.

  • PDF

실리콘 웨이퍼 연삭가공 특성 평가에 관한 연구 (Study on Characteristics of Ground Surface in Silicon Wafer Grinding)

  • 이상직;정해도;이은상;최헌종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.128-133
    • /
    • 1999
  • In recent years, LSI devices have become more powerful and lower-priced, caused by a development of various wafer materials and an increase in the diameter of wafers. On the other hand, these have created some serious problems in manufacturing of wafers because materials used as semiconductor substrate are very brittle. In view of this fact, there are some trials to apply shear-mode(or ductile-mode) grinding for efficient manufacturing of semiconductor wafers instead of conventional lapping process. In fact grinding process that has not only more excellent degree of accuracy but also more adaptable to fully automated manufacturing than lapping, is already used in Si machining field. This paper described the elementary studies to establish the grinding technology of wafers. First, we investigated the variation of grinding force and the transition of grinding mode as various grinding conditions. Then, it was inspected that the change of grinding force affected the integrity such as the topography and the roughness of ground surfaces, and led to the chemical defects generation and distribution in damaged layer. The degree of defects was estimated by FT-IR(Fourier Transformed Infrared) Spectroscopy and Auger Electron Spectroscopy

  • PDF

로타리 연삭에 의한 대직경 Si-wafer의 ELID 경면 연삭특성 (Characteristic of Mirror Surface ELID Grinding of Large Scale Diametrical Silicon Wafer with Rotary Type Grinding Machine)

  • 박창수;김원일;왕덕현
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.58-64
    • /
    • 2002
  • Mirror surface finish of Si-wafers has been achieved by rotary in-feed machining with cup-type wheels in ELID grinding. But the diameter of the workpiece is limited with the diameter of the grinding wheel in the in-feed machining method. In this study, some finding experiments by the rotary surface grinding machine with straight type wheels were conducted, by which the possible grinding area of the workpiece is independent of the diameter of the wheels. For the purpose of investigating the grinding characteristics of large scale diametrical silicon wafer, grinding conditions such as rotation speed of grinding wheels and revolution of workpieces are varied, and grinding machine used in this experiment is rotary type surface grinding m/c equipment with an ELID unit. The surface ground using the SD8000 wheels showed that mirror like surface roughness can be attained near 2~6 nm in Ra.

로타리 연삭에 의한 대직경 Si-wafer의 ELID 경면 연삭특성 (Characteristic of Mirror Surface ELID Grinding of Large Scale Diametrical Silicon Wafer with Rotary Type Grinding Machine)

  • 박창수;김원일;이윤경;왕덕현;김경년
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.660-665
    • /
    • 2002
  • Mirror surface finish of Si-wafers has been achieved by rotary in-feed machining with cup-type wheels in ELID grinding. But the diameter of the workpiece is limited with the diameter of grinding wheel in the in-feed machining method. In this study, grinding experiments by the rotary surface grinding machine with straight type wheels ware conducted, by which the possible grinding area of the workpiece is independent of the diameter of the wheels. For the purpose of investigating the grinding characteristics of large scale diametrical silicon wafer, grinding conditions such as rotation speed of grinding wheels and revolution of workpieces are varied, and grinding machine used in this experiment is rotary type surface grinding n/c equipment with an ELID wit. The surface ground using the SD8000 wheels showed that mirror like surface roughness can be attained near 2 - 6 nm in Ra.

  • PDF

Solar Cell Wafer용 Squaring & Grinding Machine의 진동 억제를 위한 설계 변경 (Design Alterations of a Squaring & Grinding Machine for the Solar Cell Wafer to Suppress Vibrations)

  • 신호범;노승훈;윤현진;길사근;김영조;김건형;한대성
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.47-52
    • /
    • 2017
  • Solar cell industry requires high technologies to stabilize apparatuses for the wafer manufacturing. Vibrations of squaring & grinding machines are one of the most critical factors for causing residual stresses of ingots, which are the main reasons of the breakage in the following processes such as wire sawing, cleaning, and modularity. In this study, the structure of a squaring & grinding machine has been analyzed through experiments and computer simulations to figure out the ways to suppress the vibrations effectively, and further to minimize the breakage of wafers. The result shows that simple design changes of applying a few ribs can improve the stability of the machine.

  • PDF

점하중시험법에 의한 반도체 기판용 실리콘 웨이퍼의 파괴강도 평가 (Evaluation of Fracture Strength of Silicon Wafer for Semiconductor Substrate by Point Load Test Method)

  • 이승미;변재원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권1호
    • /
    • pp.26-31
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the effect of grinding process and thickness on the fracture strength of silicon die used for semiconductor substrate. Method: Silicon wafers with different thickness from $200{\mu}m$ to $50{\mu}m$ were prepared by chemical mechanical polishing (CMP) and dicing before grinding (DBG) process, respectively. Fracture load was measured by point load test for 50 silicon dies per each wafer. Results: Fracture strength at the center area was lower than that at the edge area of the wafer fabricated by DBG process, while random distribution of the fracture strength was observed for the CMPed wafer. Average fracture strength of DBGed specimens was higher than that of the CMPed ones for the same thickness of wafer. Conclusion: DBG process can be more helpful for lowering fracture probability during the semiconductor fabrication process than CMP process.

반도체 Wafer용 Edge Grinding Machine의 구조 안정화를 위한 설계 개선 (Design Alterations of a Semiconductor Wafer Edge Grinder for the Improved Stability)

  • 박유라;노승훈;김영조;길사근;김건형;신윤호
    • 반도체디스플레이기술학회지
    • /
    • 제15권1호
    • /
    • pp.56-64
    • /
    • 2016
  • It is generally accepted that the surface quality of wafer edge is mostly damaged by the vibrations of the edge grinding machine. The surface quality of wafer edge is supposed to be the most dominant factor of the cracks, scratches, burrs and chips on the edge surfaces, which are the main defects of the wafers. In this study, the structure of a wafer edge grinder has been investigated through the frequency response experiment and the computer simulation to find ways to suppress the vibrations from the structure. The main reasons of the structural vibrations were analyzed. And further the design alterations were deduced from the results of the experiment and the simulation, and applied to the machine to check the effects of those alterations and to eventually improve the structural stability. The result shows that the machine can have much improved stability with relatively simple design changes.

사파이어 웨이퍼의 ELID 랩핑 가공 특성에 관한 연구 (A Study on Characteristics of ELID Lapping for Sapphire Wafer Material)

  • 곽태수;한태성;정명원;김윤지;우에하라 요시히로;오오모리 히토시
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1285-1289
    • /
    • 2012
  • This study has been focused on application of ELID lapping process for mirror-surface machining of sapphire wafer. Sapphire wafer is a superior material with optic properties of high performance as light transmission, thermal conductivity, hardness and so on. High effective surface machining technology is necessary to use sapphire as various usages. The interval ELID lapping process has been set up for lapping of the sapphire material. According to the ELID lapping experimental results, it shows that 12.5 kg of load for lapping is most pertinent to ELID lapping. the surface of sapphire can be eliminated by metal bonded wheel with micron abrasives and the surface roughness of 60 nmRa can be gotten using grinding wheel of 2,000 mesh in 4.5 um, depth of cut. In this study, the chemical experiments after ELID grinding also has been conducted to check chemical reaction between workpiece and grinding wheel on ELID grinding process. It shows that the chemical reaction has not happened as the results of the chemical experiments.