• Title/Summary/Keyword: w/c

Search Result 15,573, Processing Time 0.037 seconds

Influence of District Heating Return Temperature on Performance of Steam Turbine in Cogeneration Plant (지역난방 회수온도가 열병합발전소 증기터빈 성능에 미치는 영향 연구)

  • Kim, Jonghyun;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.14 no.3
    • /
    • pp.42-48
    • /
    • 2018
  • If the combined operation of Gwanggyo Cogeneration plant is similar to that of 2017, the CHP return temperature is lowered to $4^{\circ}C$, $6.3^{\circ}C$ and $7.8^{\circ}C$ according to the increase of heat surface area and the electric power is increased by 413 kW and 676 kW from its original 39,025 kW, and when the heat surface area is increased 75% electric power increases by 834 kW, totaling 39,859 kW. NPV, which is an economic analysis standard, is worth 350 million won, 500 million won, and 520 million won, and all measures to increase the heat surface area are proven to be worth the investment. As the heat transfer area increased, the electric power and NPV increased proportionally but the rise amount decreased. The electrical output and NPV were found to be the highest among the three options when the heat transfer area was increased by 75%.

  • PDF

Stability of W/O Nanoemulsions with Low Viscosity Prepared by PIC Method (PIC 방법으로 제조된 저점도 W/O 나노에멀젼의 안정성)

  • Cho, Wan Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.127-133
    • /
    • 2016
  • In this study, water-in-oil (W/O) nanoemulsions of water/Span 80-Nikkol BL 25/oil system were prepared by the PIC method at elevated temperature. This method allows the formation of finely dispersed W/O nanoemulsions with low viscosity in this system. However, macroemulsions rather than nanoemulsions were prepared by PIC method at room temperature. As a result of the significant change of interfacial tension with temperature, the emulsion droplet size decreases from $2{\mu}m$ to 100 nm with the increase in temperature from $30^{\circ}C$ to $80^{\circ}C$. The droplet size of nanoemulsions prepared at $80^{\circ}C$ was in the range of 50 ~ 200 nm and the internal phase content could reach as high as 15 wt%. The most stable nanoemulsion was formed in the vicinity of 7.0 of optimum HLB of the emulsifier mixture. The obtained nanoemulsions were stable without obvious change in droplet size in one month. This study provides valuable information for optimizing the formation of W/O nanoemulsions with low viscosity. These results suggest that W/O nanoemulsions of low viscosity could be useful for cosmetics with soft feeling.

Variation of Half Cell Potential Measurement in Concrete with Different Properties and Anti-Corrosive Condition (콘크리트 특성에 따른 반전위 측정값의 변화와 부식제어 조건)

  • Kim, Ki-Bum;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.95-103
    • /
    • 2013
  • Half Cell Potential (HPC) technique has been widely adopted for its quantitative evaluation of corrosion possibility. In this study, RC specimens with three different cover depths (10mm, 30mm, and 60mm) and w/c ratios (0.35, 0.55, and 0.70) are prepared and accelerated salt spray test (SST) is performed for 45 days. Steel corrosion occurs in the specimens with 0.55 of w/c and 10mm of cover depth. In the case of 0.70 of w/c and 30mm of cover depth, steel corrosion is also monitored. Considering the effect of cover depth and w/c ratio, HCP evaluation equation is proposed and the condition which can control steel corrosion is obtained. Furthermore, anti-corrosive conditions containing w/c ratio and cover depth are analyzed through Life 365 program and the conditions are compared with the results from this study.

Numerical Analysis on Cooling Characteristics of the Heat Sink for Amplifier (앰프용 히트싱크의 방열특성에 관한 해석적 연구)

  • Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.947-951
    • /
    • 2015
  • The objective of this study is to numerically investigate the cooling characteristics of the heat sink as a cooling device for the amplifier. In order to analyze the heat transfer performances of the heat sink, the steady-state thermal model of the ANSYS software was used and analyzed with the fin thickness, fin pitch and fin number of the heat sink. As a result, the temperature at the junction of heat sink was decreased with the increase of fin thickness and fin number. In addition, the thermal resistances of the heat sinks were enhanced from $0.764^{\circ}C/W$ to $0.739^{\circ}C/W$ and $1.254^{\circ}C/W$ to $0.610^{\circ}C/W$, respectively, with the increase of the fin thickness from 1 mm to 3 mm and fin number from 9 to 20, respectively.

Stress rupture properties and fracture behavior of Ni microalloyed W (W 활성소결체의 응력 파단성 및 파괴 거동에 관한 연구)

  • Kim, Su-Seong;Lee, Kyong-Sub
    • Korean Journal of Materials Research
    • /
    • v.2 no.6
    • /
    • pp.468-476
    • /
    • 1992
  • Stress rupture properties and fracture behavior of Ni microalloyed W were studied using direct load creep tester at 100$0^{\circ}C$, 110$0^{\circ}C$ and 120$0^{\circ}C$ in $H_2$. At the same grain size, 15${\mu}$m, the 100hr. stress rupture strength of W-0.4wt% Ni was 23% higher than that of W-0.2wt%Ni due to the grain growth during test. The minimum creep rate of W-0.2wt%Ni was decreased with an increase in initial grain size. By increasing the Ni content of Ni microalloyed W, rupture time was increased owing to the smaller number and size of cavity. All the specimens showed intergranular fracture by grain boundary sliding and nucleation, growth and coalescence of cavities at grain boundary.

  • PDF

ON DELAY DIFFERENTIAL EQUATIONS WITH MEROMORPHIC SOLUTIONS OF HYPER-ORDER LESS THAN ONE

  • Risto Korhonen;Yan Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.229-246
    • /
    • 2024
  • We consider the delay differential equations $$b(z)w(z+1)+c(z)w(z-1)+a(z)\frac{w'(z)}{w^k(z)}=\frac{P(z, w(z))}{Q(z, w(z))}$$, where k ∈ {1, 2}, a(z), b(z) ≢ 0, c(z) ≢ 0 are rational functions, and P(z, w(z)) and Q(z, w(z)) are polynomials in w(z) with rational coefficients satisfying certain natural conditions regarding their roots. It is shown that if this equation has a non-rational meromorphic solution w with hyper-order ρ2(w) < 1, then either degw(P) = degw(Q) + 1 ≤ 3 or max{degw(P), degw(Q)} ≤ 1. In addition, it is shown that in the case max{degw(P), degw(Q)} = 0 the equations above can have such a solution, with an additional zero density requirement, only if the coefficients of the equation satisfy certain strict conditions.

Magnetic Properties of Both Ni-W and (Ni-3%W)-Cu Textured Substrates for ReBCO Coated Conductor (고온초전도 박막선재용 Ni-$W_{xat.%}$ 및 (Ni-$W_{3at.%}$)-$CU_{xat.%}$ 이축배향 금속 기판들의 자기적 특성)

  • Song, K.J.;Kim, T.H.;Kim, H.S.;Ko, R.K.;Ha, H.S.;Ha, D.W.;Oh, S.S.;Park, C.;Yoo, S.I.;Joo, J.H.;Kim, M.W.;Kim, C.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.28-29
    • /
    • 2006
  • The magnetic properties of a series of both annealed and as-rolled Ni-$W_y$ alloy tapes with compositions y = 0, 1, 3, and 5 at.%, were studied. To compare with Ni-W alloys, the magnetic properties of a series of both annealed and as-rolled $[Ni_{97at.%}W_{3at.%}]_{100-x}Cu_x$ alloy tapes with compositions x = 0, 1, 3, 5 and 7 at.%, were studied, as well. Both the isothermal mass magnetization M(H) of a series of samples, such as both Ni-W and [Ni-W]-Cu alloy tapes, at different fixed temperatures and M(T) in fixed field, were measured using a PPMS-9 (Quantum Design). The degree of ferromagnetism of Ni-$W_y$ alloys have reduced as W-content y increases. Both the saturation magnetization $M_{sat}$ and Curie temperature $T_c$ decrease linearly with W-content y, and both $M_{sat}$ and $T_c$ go to zero at critical concentration of $y_c$ ~ 9.50 at.% W. The effect of Cu addition on both the saturation magnetization $M_sat$ and Curie temperature $T_c$ decrease linearly with Cu-content x in $[Ni_{97at.%}W_{3at.%}]_{100-x}Cu_x$ alloy tapes with compositions x = 0, 1, 3, 5, and 7 at.%. The results confirm that [Ni-W]-Cu alloy tapes can have much reduced ferromagnetism as Cu-content x increases.

  • PDF

Effect of Surface Treatments of Polycrystalline 3C-SiC Thin Films on Ohmic Contact for Extreme Environment MEMS Applications (극한 환경 MEMS용 옴익 접촉을 위한 다결정 3C-SiC 박막의 표면 처리 효과)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.234-239
    • /
    • 2007
  • This paper describes the TiW ohmic contact characteristics under the surface treatment of the polycrystalline 3C-SiC thin film grown on $SiO_2/Si(100)$ wafers by APCVD. The poly 3C-SiC surface was polished by using CMP(chemical mechanical polishing) process and then oxidized by wet-oxidation process, and finally removed SiC oxide layers. A TiW thin film as a metalization process was deposited on the surface treated poly 3C-SiC layer and was annealed through a RTA(rapid thermal annealing) process. TiW/poly 3C-SiC was investigated to get mechanical, physical, and electrical characteristics using SEM, XRD, XPS, AFM, optical microscope, I-V characteristic, and four-point probe, respectively. Contact resistivity of the surface treated 3C-SiC was measured as the lowest $1.2{\times}10^{-5}{\Omega}cm^2$ at $900^{\circ}C$ for 45 sec. Therefore, the surface treatments of poly 3C-SiC are necessary to get better contact resistance for extreme environment MEMS applications.

Fabrication of W-10wt.%Cu Powder for the Application of Metal Injection Molding (금속사출성형을 위한 W-10wt.%Cu 분말의 제조에 관한 연구)

  • 김순욱;손찬현;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.245-252
    • /
    • 2001
  • Recent remarkable progress in the semiconductor industry has promoted smaller size of semiconductor chips and increased amounts of heat generation. So, the demand for a substrate material to meet both the characteristics of thermal expansion coefficient and heat radiation has been on the increase. Under such conditions, tungsten(W)-copper(Cu) has been proposed as materials to meet both of the above characteristics. In the present study, the W-10wt.%Cu powders were synthesised by the mixing and hydrogen reduction of the starting mixture materials such as W-Cu, $W-CuCl_2$and $WO_3-CuCl_2$ in order to obtain the full densification. The W-10wt.%Cu produced by hydrogen reduction showed the higher interparticle friction than the simple mixed W-10wt%Cu because of the W agglomerates. In the dilatometric analysis the W-10wt.%Cu prepared from the $W-CuCl_2$was largely shrank by heating up $1400^{\circ}C$ at the constant heating rate of $5^{\circ}C$/min. The possibility of application of metal injection molding (MIM) was also investigated for mass production of the complex shaped W-Cu parts in semiconductor devices. The relationship between the temperature of molding die and the pressure of injection molding was analyzed and the heating up stage of 120-$290^{\circ}C$ in the debinding process was controlled for the most suitable MIM condition.

  • PDF

Mechanical Alloying Behavior of Immiscible W-Cu-Pb Ternary System (불고용 W-Cu-Pb삼원계의 기계적 합금화 거동)

  • 류성수
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.220-226
    • /
    • 1998
  • W-12.8wt%Cu-7.2%Pb powders were milled at room temperature and $-100^{\circ}C$ to investigate the mechanical alloying behavior of immiscible W-Cu-Pb system and the effect of milling temperature on the extent of alloying and microstructural refinement. W-Cu-Pb powder reached steady state after further extended milling due to Pb addition, compared to the W-Cu system. The cryomilling at $-100^{\circ}C$ caused the more refinement of powder particle size, and enhanced the solubility of Cu or Pb in W, compared with milling at room temperature. In W-12.8wt%Cu-7.2%Pb powder cryomilled at $-100^{\circ}C$, the monotectic temperature of Cu-Pb as well as the melting temperature of Cu was decreased by refinement of Cu crystalline size, and the most amorphization was occurred after milling for 150 h.

  • PDF