ON DELAY DIFFERENTIAL EQUATIONS WITH MEROMORPHIC SOLUTIONS OF HYPER-ORDER LESS THAN ONE

Risto Korhonen and Yan Liu

Abstract. We consider the delay differential equations

$$
b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w^{k}(z)}=\frac{P(z, w(z))}{Q(z, w(z))},
$$

where $k \in\{1,2\}, a(z), b(z) \not \equiv 0, c(z) \not \equiv 0$ are rational functions, and $P(z, w(z))$ and $Q(z, w(z))$ are polynomials in $w(z)$ with rational coefficients satisfying certain natural conditions regarding their roots. It is shown that if this equation has a non-rational meromorphic solution w with hyper-order $\rho_{2}(w)<1$, then either $\operatorname{deg}_{w}(P)=\operatorname{deg}_{w}(Q)+1 \leq 3$ or $\max \left\{\operatorname{deg}_{w}(P), \operatorname{deg}_{w}(Q)\right\} \leq 1$. In addition, it is shown that in the case $\max \left\{\operatorname{deg}_{w}(P), \operatorname{deg}_{w}(Q)\right\}=0$ the equations above can have such a solution, with an additional zero density requirement, only if the coefficients of the equation satisfy certain strict conditions.

1. Introduction

Ablowitz, Halburd and Herbst [1] have suggested that the existence of sufficiently many finite-order meromorphic solutions of a difference equation is a good indication that the equation in question is of Painlevé type. Further work in this direction have supported their hypothesis, see, e.g., $[9,18]$ as well as the review papers $[6,10]$ and the references therein. Halburd and one of us [11] have found necessary conditions for certain types of rational delay differential equations to admit a non-rational meromorphic solution of hyper-order less than one. The equations singled out by this method include a delay equation of Painlevé type and equations that can be explicitly solved by elliptic functions. For more recent studies applying Nevanlinna theory to delay differential equations, see, e.g., $[3,4,15,19]$.

[^0]Grammaticos, Ramani and Moreira [7] have examined Painlevé-type delay differential equations from the point of view of a version of singularity confinement. Viallet [5] has introduced a notion of algebraic entropy for such equations. Recently, Berntson [2] has considered elliptic and soliton-type solutions of examples of delay differential Painlevé equations, while Stokes [20] has conducted research on the geometric interpretation of singularity confinement phenomena in such equations.

We assume that the reader is familiar with standard symbols and fundamental results of Nevanlinna theory $[13,14]$. We recall the definitions of the order and the hyper-order for a meromorphic function w as follows:

$$
\rho(w)=\limsup _{r \rightarrow \infty} \frac{\log T(r, w)}{\log r}, \quad \rho_{2}(w)=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, w)}{\log r} .
$$

Recently, Halburd and one of us [11] applied Nevanlinna theory to study delay differential equations and obtained the following theorem:
Theorem 1.1 ([11]). Let $w(z)$ be a non-rational meromorphic solution of

$$
\begin{equation*}
w(z+1)-w(z-1)+a(z) \frac{w^{\prime}(z)}{w(z)}=R(z, w(z))=\frac{P(z, w(z))}{Q(z, w(z))} \tag{1.1}
\end{equation*}
$$

where $a(z)$ is rational, $P(z, w(z))$ is a polynomial in $w(z)$ having rational coefficients in z, and $Q(z, 0) \not \equiv 0$ is a monic polynomial in $w(z)$ with roots that are rational in z and not roots of $P(z, w(z))$. If $\rho_{2}(w)<1$, then

$$
\operatorname{deg}_{w}(P)=\operatorname{deg}_{w}(Q)+1 \leq 3
$$

or the degree of $R(z, w(z))$ as a rational function in $w(z)$ is either 0 or 1 .
The coefficients on the left hand side of equation (1.1) are selected to be of a specific form so that the equation contains the equation

$$
\begin{equation*}
w(z+1)-w(z-1)+a \frac{w^{\prime}(z)}{w(z)}=b, \quad a, b \in \mathbb{C} \tag{1.2}
\end{equation*}
$$

obtained by Quispel, Capel and Sahadevan [17] as a symmetry reduction of the Kac-van Moerbeke equation. Note that if $a \neq 0$, then (1.2) can be mapped, using the transformation $w(z)=a f(z)$, into

$$
\begin{equation*}
f(z+1)-f(z-1)+\frac{f^{\prime}(z)}{f(z)}=C \tag{1.3}
\end{equation*}
$$

where $C=b / a$. Equation (1.2) is one of the few delay differential equations with a known continuum limit to a Painlevé equation. It is natural to ask how restrictive is the choice made in (1.1), and what happens if we consider a more general equation, for example

$$
\begin{equation*}
b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w(z)}=R(z, w(z))=\frac{P(z, w(z))}{Q(z, w(z))} \tag{1.4}
\end{equation*}
$$

where, as in (1.1), we assume that $a(z), b(z), c(z)$ is rational, $P(z, w(z))$ is a polynomial in $w(z)$ having rational coefficients in z, and $Q(z, 0) \not \equiv 0$ is a monic
polynomial in $w(z)$ with roots that are rational in z and not roots of $P(z, w(z))$. In the special case, where one of $b(z), c(z)$ vanishes identically, the equation (1.4) has been considered in [19]. In this paper, we consider the case $b(z) \not \equiv 0$, $c(z) \not \equiv 0$ and obtain the following theorem.

Theorem 1.2. Let $w(z)$ be a non-rational meromorphic solution of equation (1.4). If $\rho_{2}(w)<1$, then

$$
\begin{equation*}
\operatorname{deg}_{w}(P)=\operatorname{deg}_{w}(Q)+1 \leq 3 \quad \text { or } \quad \operatorname{deg}_{w}(R) \leq 1 \tag{1.5}
\end{equation*}
$$

If, in addition, $\operatorname{deg}_{w}(R)=3$, then $T(r, w)=\bar{N}(r, w)+S(r, w)$.
The proof of Theorem 1.2 in Section 3 below is a simplified version of the proof of Theorem 1.1 in [11]. Halburd and one of us [11] considered more carefully the special case, where $\operatorname{deg}_{w}(R(z, w))=0$ in (1.1):

Theorem 1.3 ([11]). Let $w(z)$ be a non-rational meromorphic solution of

$$
\begin{equation*}
w(z+1)-w(z-1)+a(z) \frac{w^{\prime}(z)}{w(z)}=b(z) \tag{1.6}
\end{equation*}
$$

where $a(z) \not \equiv 0$ and $b(z)$ are rational. If $\rho_{2}(w)<1$, and for any $\epsilon>0$

$$
\bar{N}\left(r, \frac{1}{w}\right) \geq\left(\frac{3}{4}+\epsilon\right) T(r, w)+S(r, w)
$$

then the coefficients $a(z)$ and $b(z)$ are both constants.
Under the assumptions of Theorem 1.3 the equation (1.6) reduces exactly into equation (1.2) discovered by Quispel, Capel and Sahadevan. Similarly, we consider the case, where $R(z, w(z))=d(z)$ does not depend on $w(z)$, and the equation (1.4) becomes

$$
\begin{equation*}
a(z) w(z+1)+b(z) w(z-1)+c(z) \frac{w^{\prime}(z)}{w(z)}=d(z) \tag{1.7}
\end{equation*}
$$

where $a(z) \not \equiv 0, b(z) \not \equiv 0, c(z), d(z)$ are rational. We obtain the following generalization of Theorem 1.3.
Theorem 1.4. Let $w(z)$ be a non-rational meromorphic solution of equation (1.7), where $a(z) \not \equiv 0, b(z) \not \equiv 0, c(z), d(z)$ are rational. If $\rho_{2}(w)<1$, and for any $\varepsilon>0$

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{w}\right) \geq\left(\frac{3}{4}+\varepsilon\right) T(r, w)+S(r, w) \tag{1.8}
\end{equation*}
$$

then (1.7) reduces by a linear change in $w(z)$ into (1.3), where $f(z)=\frac{a(z-1)}{c(z-1)} w(z)$ and $C \in \mathbb{C}$.

Finally, we consider an equation outside the class (1.4).
Theorem 1.5. Let $w(z)$ be a non-rational meromorphic solution of

$$
\begin{equation*}
\alpha(z) w(z+1)+\beta(z) w(z-1)=\frac{a(z) w^{\prime}(z)+b(z) w(z)}{w^{2}(z)}+c(z) \tag{1.9}
\end{equation*}
$$

where $\alpha(z) \not \equiv 0, \beta(z) \not \equiv 0, a(z) \not \equiv 0, b(z), c(z)$ are rational. If $\rho_{2}(w)<1$, and for any $\varepsilon>0$

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{w}\right) \geq\left(\frac{3}{4}+\varepsilon\right) T(r, w)+S(r, w), \tag{1.10}
\end{equation*}
$$

then $c(z) \equiv 0$ and

$$
\frac{-\beta(z+2)}{\alpha(z)}=\frac{\alpha(z+1) a(z+2)+\beta(z+2) a(z+1)}{\alpha(z) a(z+1)+\beta(z+1) a(z)}
$$

and

$$
\frac{b(z+2)}{a(z+2)}-\frac{b(z)}{a(z)}=\frac{a^{\prime}(z)}{a(z)}-\frac{a^{\prime}(z+2)}{a(z+2)}+\gamma(z)
$$

where $\gamma(z)=\frac{\beta^{\prime}(z+2)}{\beta(z+2)}-\frac{\alpha^{\prime}(z)}{\alpha(z)}$.
The theorem above is a generalization of [11, Theorem 1.3], which is a special case of Theorem 1.5 corresponding to the choices $\alpha(z)=1$ and $\beta(z)=-1$. In the final result we consider a version of the equation (1.9), where the right hand side is a rational function of $w(z)$ with rational coefficients.

Theorem 1.6. Let $w(z)$ be a non-rational meromorphic solution of

$$
\begin{equation*}
b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w^{2}(z)}=R(z, w(z))=\frac{P(z, w(z))}{Q(z, w(z))} \tag{1.11}
\end{equation*}
$$

where $a(z)$ is rational, $P(z, w(z))$ is a polynomial in $w(z)$ having rational coefficients in z, and $Q(z, 0) \not \equiv 0$ is a monic polynomial in $w(z)$ with roots that are rational in z and not roots of $P(z, w(z))$. If $\rho_{2}(w)<1$, then

$$
\begin{equation*}
\operatorname{deg}_{w}(P)=\operatorname{deg}_{w}(Q)+1 \leq 3 \quad \text { or } \quad \operatorname{deg}_{w}(R) \leq 1 \tag{1.12}
\end{equation*}
$$

If, in addition, $\operatorname{deg}_{w}(R)=3$, then $N\left(r, \frac{1}{w}\right)=S(r, w)$.
The remainder of the paper is organized as follows. Section 2 contains two auxiliary lemmas needed in the proofs of Theorems 1.2 and $1.4-1.6$ in Sections 3-6. Section 3 contains the proof of Theorem 1.2, while Sections 4-6 present the proofs of Theorems 1.4-1.6.

2. Lemmas

The Valiron-Mohon'ko identity [16,21] is a useful tool to estimate the characteristic function of rational functions. Its proof can be found, for example, in [14, Theorem 2.2.5].

Lemma 2.1 ([14], Theorem 2.2.5). Let w be a meromorphic function and $R(z, w)$ be a rational function in w and meromorphic in z. If the coefficients of $R(z, w)$ are small compared to w, then

$$
T(r, R(z, w))=\operatorname{deg}_{w}(R) T(r, w)+S(r, w)
$$

The following lemma, related to the value distribution of meromorphic solutions of a large class of differential-difference equations, is an important tool in this article. A differential-difference polynomial in $w(z)$ is defined by
$P(z, w)=\sum_{l \in L} b_{l}(z) w(z)^{l_{0,0}} w\left(z+c_{1}\right)^{l_{1,0}} \cdots w\left(z+c_{\nu}\right)^{l_{\nu, 0}} w^{\prime}(z)^{l_{0,1}} \cdots w^{(\mu)}\left(z+c_{\nu}\right)^{l_{\nu, \mu}}$,
where c_{1}, \ldots, c_{ν} are distinct complex constants, L is a finite index set consisting of elements of the form $l=\left(l_{0,0}, \ldots, l_{\nu, \mu}\right)$ and the coefficients $b_{l}(z)$ are rational functions of z for all $l \in L$.

Lemma 2.2 ([11], Lemma 2.1). Let w be a non-rational meromorphic solution of

$$
\begin{equation*}
P(z, w)=0 \tag{2.1}
\end{equation*}
$$

where $P(z, w)$ is a differential-difference polynomial in $w(z)$ with rational coefficients, and let a_{1}, \ldots, a_{k} be rational functions. If the following two conditions
(1) $P\left(z, a_{j}\right) \not \equiv 0$ for all $j \in\{i, \ldots, k\}$;
(2) there exist $s>0$ and $\tau \in(0,1)$ such that

$$
\begin{equation*}
\sum_{j=1}^{k} n\left(r, \frac{1}{w-a_{j}}\right) \leq k \tau n(r+s, w)+O(1) \tag{2.2}
\end{equation*}
$$

are satisfied, then $\rho_{2}(w) \geq 1$.

3. Proof of Theorem 1.2

Liu and Song [15, Remark 1.1] found a clever way to simplify the first part of the proof of [11, Theorem 1.1]. In the current proof of Theorem 1.2, we have introduced new ideas to further simplify the proof method of [11, Theorem 1.1].

The first step we prove is that $\operatorname{deg}_{w}(R) \leq 3$. In the second step we discuss four cases which depend on the numbers of the roots of $Q(z, w)$. Suppose that (1.5) has a non-rational meromorphic solution $w(z)$ with $\rho_{2}(w)<1$.

First step: Since $w=0$ is not a pole of $R(z, w(z))$, we see that either $w(z)$ has finitely many zeros which are the zeros of $a(z)$ or $w(z)$ has infinite many zeros which are poles of $w(z+1)$ or $w(z-1)$ or both. Thus using [15, Remark 1.1] and [12, Lemma 8.3] we obtain

$$
\begin{aligned}
& N\left(r, b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w(z)}\right) \\
\leq & N(r, w(z+1))+N(r, w(z-1))+\bar{N}(r, w(z))+S(r, w) \\
\leq & 2 N(r, w(z))+\bar{N}(r, w(z))+S(r, w) .
\end{aligned}
$$

From using Lemma 2.1, the logarithmic derivative lemma and its difference analogue, it follows that

$$
\operatorname{deg}_{w}(R(z, w(z))) T(r, w(z)) \leq T\left(r, b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w(z)}\right)
$$

$\leq N\left(r, b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w(z)}\right)+m(r, w(z))+S(r, w)$
$\leq 2 N(r, w(z))+\bar{N}(r, w(z))+m(r, w(z))+S(r, w)$
$\leq 2 T(r, w(z))+\bar{N}(r, w(z))+S(r, w)$.
Therefore,

$$
\left(\operatorname{deg}_{w}(R(z, w(z)))-2\right) T(r, w(z)) \leq \bar{N}(r, w(z))+S(r, w)
$$

which implies that $\operatorname{deg}_{w} R(z) \leq 3$, i.e., $\operatorname{deg}_{w}(P) \leq 3$, and $\operatorname{deg}_{w}(Q) \leq 3$. Also, if $\operatorname{deg}_{w} R(z)=3$, it follows that $T(r, w)=\bar{N}(r, w)+S(r, w)$.

Second step: Case 1. If $Q(z, w(z))$ in (1.4) has at least two distinct nonzero rational roots for w, say $d_{1}(z) \not \equiv 0$ and $d_{2}(z) \not \equiv 0$, then (1.4) can be written as

$$
\begin{align*}
& b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w(z)} \\
= & \frac{P(z, w(z))}{\left(w(z)-d_{1}(z)\right)\left(w(z)-d_{2}(z)\right) \tilde{Q}(z, w(z))}, \tag{3.1}
\end{align*}
$$

where $\operatorname{deg}_{w}(P) \leq 3$ and $\operatorname{deg}_{w}(\tilde{Q}) \leq 1$. Here, there exists the possibility that $\tilde{Q}\left(z, d_{1}(z)\right) \equiv 0$ or $\tilde{Q}\left(z, d_{2}(z)\right) \equiv 0$. We also assume that $P(z, w(z))$ and $\tilde{Q}(z, w(z))$ do not have common roots. Since $P\left(z, d_{j}\right) \not \equiv 0$ for $j=1,2$, neither $d_{1}(z)$ nor $d_{2}(z)$ is a solution of (3.1), and thus the first condition of Lemma 2.2 is satisfied.

Assume that $\hat{z} \in \mathbb{C}$ is any point satisfying

$$
\begin{equation*}
w(\hat{z})=d_{1}(\hat{z}) \tag{3.2}
\end{equation*}
$$

and such that none of the rational coefficients of (3.1) and their shifts have a zero or a pole at \hat{z} and $P(\hat{z}, w(\hat{z})) \neq 0$. Let p denote the order of the zero of $w-d_{1}$ at $z=\hat{z}$. Here, \hat{z} is called a generic root of $w-d_{1}$ of order p.

We will only consider generic roots from now on. Since the coefficients are rational, the contributions from the non-generic roots can always be included in an error term of the type $O(\log r)$. Next we discuss whether $z=\hat{z}$ is a zero or a pole of $w(z+n)(n=1,2,3)$ or not.

Now, by (3.1), it follows that $w(\hat{z}+1)=\infty$ or $w(\hat{z}-1)=\infty$ and the order is at least p. Without loss of generality we may assume that $w(\hat{z}+1)=\infty$. Then, by shifting the equation (3.1), we have

$$
\begin{align*}
& b(z+1) w(z+2)+c(z+1) w(z)+a(z+1) \frac{w^{\prime}(z+1)}{w(z+1)} \\
= & \frac{P(z+1, w(z+1))}{\left(w(z+1)-d_{1}(z+1)\right)\left(w(z+1)-d_{2}(z+1)\right) \tilde{Q}(z+1, w(z+1))} . \tag{3.3}
\end{align*}
$$

Subcase 1.1. Let

$$
\operatorname{deg}_{w}(P) \leq \operatorname{deg}_{w}(\tilde{Q})+2
$$

Now, by (3.3), $\hat{z}+2$ is a pole of $w(z)$ with order one. Therefore, for any $p \geq 1$ there is a pole of order at least p at $z=\hat{z}+1$, which can be paired up with the root of $w-d_{1}$ at $z=\hat{z}$.

Using the same discussions for the roots of $w-d_{2}$ without the possible overlap in the pairing of poles with the zeros of $w-d_{1}$ and $w-d_{2}$, by adding up all points \hat{z} such that (3.2) is valid, and similarly for $w(\hat{z})=d_{2}(\hat{z})$, it follows that

$$
n\left(r, \frac{1}{w-d_{1}}\right)+n\left(r, \frac{1}{w-d_{2}}\right) \leq n(r+1, w)+O(1)
$$

Therefore the second condition (2.2) of Lemma 2.2 is satisfied, and so $\rho_{2}(w) \geq$ 1 , which is a contradiction with $\rho_{2}(w)<1$.

Subcase 1.2. Let

$$
\operatorname{deg}_{w}(P)>\operatorname{deg}_{w}(\tilde{Q})+2
$$

Since $\operatorname{deg}_{w}(P) \leq 3$, then $\operatorname{deg}_{w}(P)=3$, and it immediately follows that $\operatorname{deg}_{w}(Q)$ $=2$. Thus the assertion (1.5) holds in this case.

Case 2. Suppose that $Q(z, w(z))$ in (1.4) has at least one non-zero rational root, say $d_{1}(z) \not \equiv 0$. Then (1.4) can be written as

$$
\begin{equation*}
b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w(z)}=\frac{P(z, w(z))}{\left(w(z)-d_{1}(z)\right)^{n} \mathscr{Q}(z, w(z))} \tag{3.4}
\end{equation*}
$$

where $\operatorname{deg}_{w}(P) \leq 3$ and $n+l \leq 3, \operatorname{deg}_{w}(\check{Q})=l$. Then $d_{1}(z)$ is not a solution of (3.4), and thus the first condition of Lemma 2.2 is satisfied for d_{1}. We assume that $n \in\{2,3\}$ and consider the case $n=1$ as a part of Case 3 below. Suppose that \hat{z} is a generic root of $w(z)-d_{1}(z)$ of order p. Next without loss of generality suppose that $\hat{z}+1$ is a pole of $w(z)$ with order $n p$ at least.

Subcase 2.1. Let

$$
\operatorname{deg}_{w}(P) \leq n+l
$$

Then $\hat{z}+2$ is a pole of $w(z)$ with order one, and $\hat{z}+3$ is a pole of $w(z)$ with order $n p$, at least. By continuing the iteration, it yields three possible cases as follows:
(a) $w(\hat{z}+4)=\infty$;
(b) $w(\hat{z}+4) \neq \infty$ and $w(\hat{z}+4) \neq d_{1}(\hat{z}+4)$;
(c) $w(\hat{z}+4)=d_{1}(\hat{z}+4)$.

If the case (a) or (b) is valid, then $\hat{z}+5$ is a pole of $w(z)$ with order $n p$, and we have even more poles for every root of $w-d_{1}$. For the case (c), it is at least in principle possible that $w(\hat{z}+5)$ is a finite value. By adding up the contribution from all points \hat{z} to corresponding counting functions, it follows that

$$
n\left(r, \frac{1}{w-d_{1}}\right) \leq \frac{1}{n} n(r+4, w)+O(1) .
$$

Thus both conditions of Lemma 2.2 are satisfied, and so $\rho_{2}(w) \geq 1$.
Subcase 2.2. Let

$$
\operatorname{deg}_{w}(P) \geq n+l+1
$$

Suppose again that \hat{z} is a generic root of $w(z)-d_{1}(z)$ of order p. Similarly as before, say $\hat{z}+1$ is a pole of $w(z)$ with order $n p$ at least. This implies that $\hat{z}+2$ is a pole of $w(z)$ with order $n p$ at least, and so, the only way that $w(\hat{z}+4)$ can be finite is that $w(\hat{z}+3)=d_{1}(\hat{z}+3)$, or $w(\hat{z}+3)$ is a root of $\check{Q}(z, w(z))$, with multiplicity p. In this case, we have

$$
n\left(r, \frac{1}{w-d_{1}}\right) \leq \frac{1}{n} n(r+3, w)+O(1)
$$

by going through all roots of $w-d_{1}$ in this way. Lemma 2.2 thus implies that $\rho_{2}(w) \geq 1$.

Case 3. Suppose now that $Q(z, w)$ in the equation (1.4) has only one simple root, say $d_{1}(z) \not \equiv 0$. Then (1.4) can be written as

$$
b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w(z)}=\frac{P(z, w(z))}{w(z)-d_{1}(z)} .
$$

Subcase 3.1. Assume first that

$$
\operatorname{deg}_{w}(P)=3 .
$$

Let \hat{z} be a generic root of $w(z)-d_{1}(z)$ of order p. Similarly as before, say $\hat{z}+1$ is a pole of $w(z)$ with order p. Then $\hat{z}+2$ is a pole of $w(z)$ with order $2 p$ at least, and $\hat{z}+3$ is a pole of $w(z)$ with order $4 p$, and so on. We have

$$
n\left(r, \frac{1}{w-d_{1}}\right) \leq \frac{1}{3} n(r+2, w)+O(1)
$$

Lemma 2.2 thus implies that $\rho_{2}(w) \geq 1$.
Subcase 3.2. Assume that

$$
\operatorname{deg}_{w}(P) \leq 2
$$

If $\operatorname{deg}_{w}(P)=2$, then $\operatorname{deg}_{w}(P)=\operatorname{deg}_{w}(Q)+1$ and thus the assertion (1.5) holds. If $\operatorname{deg}_{w}(P) \leq 1$, then $\operatorname{deg}_{w}(R)=1$.

Case 4. $R(z, w(z))$ is a polynomial in $w(z)$. Then (1.4) takes the form

$$
\begin{equation*}
b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w(z)}=P(z, w(z)) \tag{3.5}
\end{equation*}
$$

where $\operatorname{deg}_{w}(P) \leq 3$. If $\operatorname{deg}_{w}(P) \leq 1$, then $\operatorname{deg}_{w}(R) \leq 1$.
Assume therefore that

$$
\operatorname{deg}_{w}(P) \geq 2
$$

and suppose first that $w(z)$ has infinitely many poles. Next by applying the reasoning in the proof of [11, Lemma 3.2], we get $\rho_{2}(w) \geq \lambda_{2}\left(\frac{1}{w}\right) \geq 1$.

Suppose now that $w(z)$ has finitely many poles, and that $\rho_{2}(w)<1$. In this case, from (3.5), we get

$$
\begin{equation*}
b(z) w(z) w(z+1)+c(z) w(z) w(z-1)+a(z) w^{\prime}(z)=P(z, w(z)) w(z) \tag{3.6}
\end{equation*}
$$

Since $\operatorname{deg}_{w}(P) \geq 2$, using the difference analogue of Clunie Lemma [8] with [12, Remark 5.3], $m(r, w)=S(r, w)$, so $T(r, w)=S(r, w)$, which is a contradiction. The proof of Theorem 1.2 is completed.

4. Proof of Theorem 1.4

First let's rewrite equation (1.7) as

$$
\begin{equation*}
\alpha(z) w(z+1)+\beta(z) w(z-1)+\frac{w^{\prime}(z)}{w(z)}=\gamma(z) \tag{4.1}
\end{equation*}
$$

where $\alpha(z)=\frac{a(z)}{c(z)} \not \equiv 0, \beta(z)=\frac{b(z)}{c(z)} \not \equiv 0, \gamma(z)=\frac{d(z)}{c(z)}$ are rational.
By (1.8) and by the assumption that $w(z)$ is non-rational, it follows that $w(z)$ has infinitely many zeros. Since $\gamma(z)$ is rational, next we only consider the case that \hat{z} is a generic zero of $w(z)$. We need to consider two cases.

Case 1. Suppose first that $w(\hat{z}+1)=\infty$ and $w(\hat{z}-1)=\infty$. Then from (4.1) it follows that $w(\hat{z}+2)=\infty$ and $w(\hat{z}-2)=\infty$. Now, at least in principle we may have $w(\hat{z}-3)=0=w(\hat{z}+3)$. Hence, in this case we can find at least four poles of $w(z)$ (ignoring multiplicity) which correspond to three zeros (also ignoring multiplicity) of $w(z)$ and to no other zeros.

Case 2. Assume now that $w(\hat{z}+1)=\infty$ or $w(\hat{z}-1)=\infty$. Without loss of generality we can then suppose that $w(\hat{z}+1)=\infty$ (the case $w(\hat{z}-1)=\infty$ is completely analogous). We will begin by showing that we need only consider simple generic zeros of $w(z)$. Let $N_{1}\left(r, \frac{1}{w}\right)$ denote the integrated counting function for the simple zeros of w and let $N_{[p}\left(r, \frac{1}{w}\right)$ be the counting function for the zeros of w, which are of order p or higher. Then $N\left(r, \frac{1}{w}\right)=N_{1}\left(r, \frac{1}{w}\right)+$ $N_{[2}\left(r, \frac{1}{w}\right)$ and

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{w}\right) & =N_{1}\left(r, \frac{1}{w}\right)+\bar{N}_{[2}\left(r, \frac{1}{w}\right) \\
& \leq N_{1}\left(r, \frac{1}{w}\right)+\frac{1}{2} N_{[2}\left(r, \frac{1}{w}\right) \\
& \leq \frac{1}{2} N_{1}\left(r, \frac{1}{w}\right)+\frac{1}{2} N\left(r, \frac{1}{w}\right) .
\end{aligned}
$$

Hence, using the assumption (1.8),

$$
\begin{aligned}
N_{1}\left(r, \frac{1}{w}\right) & \geq 2 \bar{N}\left(r, \frac{1}{w}\right)-N\left(r, \frac{1}{w}\right) \\
& \geq\left(\frac{3}{2}+\varepsilon\right) T(r, w)-N\left(r, \frac{1}{w}\right) \\
& \geq\left(\frac{1}{2}+\varepsilon\right) T(r, w)+S(r, w) .
\end{aligned}
$$

Thus there are at least " $\left(\frac{1}{2}+\varepsilon\right) T(r, w)$ " worth of simple zeros of w. So we consider the case in which the zeros of w at \hat{z} are simple, and we have

$$
\begin{align*}
w(z-1) & =K+O(z-\hat{z}), \quad K \in \mathbb{C}, \\
w(z) & =A(z-\hat{z})+O\left((z-\hat{z})^{2}\right), \quad A \in \mathbb{C} \backslash\{0\}, \\
\alpha(z) w(z+1) & =-\frac{1}{z-\hat{z}}+O(1), \tag{4.2}\\
\alpha(z+1) w(z+2) & =\frac{1}{z-\hat{z}}+O(1), \\
\alpha(z+2) w(z+3) & =\frac{\alpha(z)+\beta(z+2)}{\alpha(z)} \cdot \frac{1}{z-\hat{z}}+O(z-\hat{z})
\end{align*}
$$

in a neighborhood of \hat{z}.
If $\alpha(\hat{z})+\beta(\hat{z}+2) \neq 0$, then

$$
\alpha(z+3) w(z+4)=\frac{\alpha(z+1)-\beta(z+3)}{\alpha(z+1)} \cdot \frac{1}{z-\hat{z}}+O(z-\hat{z}) .
$$

Therefore either we have infinitely many points such that $\alpha(z)=-\beta(z+2)$ or we can find at least four poles of $w(z)$ for every two simple zeros of $w(z)$, if $w(z+4)=\infty$. Even if $w(z+4)=0$, there are three poles of $w(z)$ for every two simple zeros of $w(z)$, and then, either way,

$$
\bar{n}\left(r, \frac{1}{w}\right) \leq \frac{2}{3} n(r+1, w)+O(1) .
$$

Hence, for any $\varepsilon>0$,

$$
\bar{N}\left(r, \frac{1}{w}\right) \leq\left(\frac{2}{3}+\frac{\varepsilon}{2}\right) N(r+1, w)+O(\log r)
$$

and so by using [12, Lemma 8.3] to deduce that $N(r+1, w)=N(r, w)+S(r, w)$, we have

$$
\bar{N}\left(r, \frac{1}{w}\right) \leq\left(\frac{2}{3}+\frac{\varepsilon}{2}\right) T(r, w)+S(r, w)
$$

This is a contradiction with the assumption (1.8).
So

$$
\begin{equation*}
\beta(z+2)=-\alpha(z) . \tag{4.3}
\end{equation*}
$$

By substituting (4.3) into (1.7), it follows that

$$
\begin{equation*}
\alpha(z) w(z+1)-\alpha(z-2) w(z-1)+\frac{w^{\prime}(z)}{w(z)}=\gamma(z) \tag{4.4}
\end{equation*}
$$

Letting $f(z)=\alpha(z-1) w(z)$, then (4.4) can be written

$$
f(z+1)-f(z-1)+\frac{f^{\prime}(z)}{f(z)}=\gamma(z)+\frac{\alpha^{\prime}(z-1)}{\alpha(z-1)} .
$$

By using Theorem 1.3, we get $\gamma(z)+\frac{\alpha^{\prime}(z-1)}{\alpha(z-1)}=C(C \in \mathbb{C})$.

5. Proof of Theorem 1.5

By (1.10) and by the assumption that $w(z)$ is non-rational, it follows that $w(z)$ has infinitely many zeros. Since $a(\hat{z}), b(\hat{z})$ and $c(\hat{z})$ are rational, it is sufficient to just think about the case, where $z=\hat{z}$ is a generic zero of $w(z)$ of order p. Then by (1.9) there is a pole of $w(z)$ of order $p+1$, at least, at $z=\hat{z}+1$ or at $z=\hat{z}-1$ (or at both points). We need to consider two cases.

Case 1. Assume now that $w(\hat{z}+1)=\infty$ or $w(\hat{z}-1)=\infty$. Without loss of generality we can then suppose that $w(\hat{z}+1)=\infty$.

Subcase 1.1. The zero is simple, and suppose that $c(z) \not \equiv 0$. Then, in a neighborhood of \hat{z},

$$
\begin{align*}
& w(z-1)=K+O(z-\hat{z}), \quad K \in \mathbb{C} \\
& w(z)=\delta(z-\hat{z})+O\left((z-\hat{z})^{2}\right), \quad \delta \in \mathbb{C} \backslash\{0\} \\
& \alpha(z) w(z+1)=\frac{a(z)}{\delta(z-\hat{z})^{2}}+\frac{b(z)}{\delta(z-\hat{z})}+c(z)-K \beta(z)+O(z-\hat{z}), \tag{5.1}\\
& \alpha(z+1) w(z+2)=c(z+1)+O(z-\hat{z}) \\
& \alpha(z+2) w(z+3)=\frac{-\beta(z+2)}{\alpha(z)}\left(\frac{a(z)}{\delta(z-\hat{z})^{2}}+\frac{b(z)}{\delta(z-\hat{z})}\right)+O(1)
\end{align*}
$$

where there can be at most finitely many \hat{z} such that $c(\hat{z}+1)=0$. Hence there are two poles of $w(z)$ (counting multiplicity) corresponding to one zero (counting multiplicity) in this case.

Assume now that $c(z) \equiv 0, w(z)$ has a pole at $z=\hat{z}+1$, and that $w(\hat{z}-1)$ is finite. Then, in a neighborhood of \hat{z},

$$
\begin{align*}
& w(z-1)=K+O(z-\hat{z}), \quad K \in \mathbb{C} \\
& w(z)=\delta(z-\hat{z})+O\left((z-\hat{z})^{2}\right), \quad \delta \in \mathbb{C} \backslash\{0\} \\
& \begin{array}{c}
\alpha(z) w(z+1)=\frac{a(z)}{\delta(z-\hat{z})^{2}}+\frac{b(z)}{\delta(z-\hat{z})}+O(1) \\
\alpha(z+1) w(z+2)= \\
\\
\quad\left(-\beta(z+1)-\frac{2 \alpha(z) a(z+1)}{a(z)}\right) \delta(z-\hat{z}) \\
\\
\alpha(z+2) w(z+3)=\frac{A(z)}{\delta(z-\hat{z})^{2}}+\frac{B(z)}{\delta(z-\hat{z})}+O(1)
\end{array}
\end{align*}
$$

where

$$
\begin{aligned}
A(z)= & \frac{-\beta(z+2) a(z)}{\alpha(z)}+\frac{\alpha(z+1) a(z) a(z+2)}{-\beta(z+1) a(z)-2 \alpha(z) a(z+1)}, \\
B(z)= & \frac{-\beta(z+2) D(z) b(z)+\alpha(z) \alpha(z+1) a(z) b(z+2)}{\alpha(z) D(z)} \\
& +\frac{a(z+2)\left(\alpha(z+1) D^{\prime}(z) a(z)-D(z)\left(\alpha^{\prime}(z+1) a(z)+\alpha(z+1) a^{\prime}(z)\right)\right)}{D^{2}(z)}
\end{aligned}
$$

$D(z)=-\beta(z+1) a(z)-2 \alpha(z) a(z+1)$.
From (5.2), we find if $A(z) \not \equiv 0$, there are at least four poles (counting multiplicity) with the two zeros of $w(z)$ (counting multiplicity). If

$$
\begin{equation*}
A(z)=\frac{-\beta(z+2) a(z)}{\alpha(z)}+\frac{\alpha(z+1) a(z) a(z+2)}{-\beta(z+1) a(z)-2 \alpha(z) a(z+1)}=0 \tag{5.3}
\end{equation*}
$$

and $B(z) \not \equiv 0$, from equation (1.9) it follows that

$$
\alpha(z+3) w(z+4)=-\frac{\alpha(z+2) \delta a(z+3)}{B(z)}+O(z-\hat{z})
$$

for all z in a neighborhood of \hat{z}, and so $w(\hat{z}+4)$ is finite and non-zero with at most finitely many exceptions. Thus we can group together three poles of $w(z)$ (counting multiplicity) and two zeros of $w(z)$ (ignoring multiplicity). If $A(z) \equiv 0$ and $B(z) \equiv 0$, then $w(\hat{z}+3)$ can be finite.

Subcase 1.2. If the order of the zero of $w(z)$ at $z=\hat{z}$ is $p \geq 2$, then there are always at least three poles of $w(z)$ (counting multiplicity) for each two zeros of $w(z)$ (ignoring multiplicity) in sequences (5.1) and (5.2).

If there are only finitely many zeros \hat{z} of $w(z)$ such that $A(z) \equiv 0$ and $B(z) \equiv 0$ both hold, then

$$
\bar{n}\left(r, \frac{1}{w}\right) \leq \frac{2}{3} n(r+1, w)+O(1) .
$$

Hence, for any $\varepsilon>0$,

$$
\bar{N}\left(r, \frac{1}{w}\right) \leq\left(\frac{2}{3}+\frac{\varepsilon}{2}\right) N(r+1, w)+O(\log r)
$$

and so by using [12, Lemma 8.3] to deduce that $N(r+1, w)=N(r, w)+S(r, w)$, we have

$$
\bar{N}\left(r, \frac{1}{w}\right) \leq\left(\frac{2}{3}+\frac{\varepsilon}{2}\right) T(r, w)+S(r, w) .
$$

This is in contradiction with (1.10), and so there must be infinitely many points \hat{z} such that $A(z) \equiv 0$ and $B(z) \equiv 0$ are both satisfied.

By $A(z) \equiv 0$, we get

$$
\frac{-\beta(z+2)}{\alpha(z)}=\frac{\alpha(z+1) a(z+2)+\beta(z+2) a(z+1)}{\alpha(z) a(z+1)+\beta(z+1) a(z)}
$$

and by $B(z) \equiv 0$, it follows that

$$
\frac{b(z+2)}{a(z+2)}-\frac{b(z)}{a(z)}=\frac{a^{\prime}(z)}{a(z)}-\frac{a^{\prime}(z+2)}{a(z+2)}+\gamma(z)
$$

where $\gamma(z)=\frac{\beta^{\prime}(z+2)}{\beta(z+2)}-\frac{\alpha^{\prime}(z)}{\alpha(z)}$.
Case 2. Suppose that $w(\hat{z}+1)=\infty$ and $w(\hat{z}-1)=\infty$. Then, even if $w(\hat{z}+2)=0$ and $w(\hat{z}-2)=0$, we can group together three zeros of $w(z)$ (ignoring multiplicity) with at least four poles of $w(z)$ (counting multiplicity).

6. Proof of Theorem 1.6

In the proof, as the first step we prove that $\operatorname{deg}_{w}(R) \leq 3$. In the second step we discuss four cases depending on the numbers of the roots of $Q(z, w)$. Suppose that (1.11) has a non-rational meromorphic solution $w(z)$ with $\rho_{2}(w)<1$.

First step: Since $w=0$ is not a pole of $R(z, w(z))$, we see that either $w(z)$ has finitely many zeros which are the zeros of $a(z)$ or $w(z)$ has infinite many zeros which are poles of $w(z+1)$ or $w(z-1)$ or both. Next similarly to Case 1 in the proof of Theorem 1.2, by using [12, Lemma 8.3], Lemma 2.1, the logarithmic derivative lemma and its difference analogue, it follows that

$$
\begin{aligned}
& \operatorname{deg}_{w}(R(z, w(z))) T(r, w(z)) \\
\leq & T\left(r, b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w^{2}(z)}\right) \\
\leq & 2 N(r, w(z))+m(r, w)+m\left(r, \frac{1}{w(z)}\right)+S(r, w) \\
\leq & 2 T(r, w(z))+m\left(r, \frac{1}{w(z)}\right)+S(r, w) .
\end{aligned}
$$

Therefore,

$$
\left(\operatorname{deg}_{w}(R(z, w(z)))-2\right) T(r, w(z)) \leq m\left(r, \frac{1}{w(z)}\right)+S(r, w)
$$

which implies that $\operatorname{deg}_{w} R(z) \leq 3$, i.e., $\operatorname{deg}_{w}(P) \leq 3$, and $\operatorname{deg}_{w}(Q) \leq 3$. Furthermore, if $\operatorname{deg}_{w}(R)=3$, we have $N\left(r, \frac{1}{w}\right)=S(r, w)$.

Second step: Case 1. If $Q(z, w(z))$ in (1.11) has at least two distinct non-zero rational roots for w, say $d_{1}(z) \not \equiv 0$ and $d_{2}(z) \not \equiv 0$, then (1.11) can be written as

$$
\begin{align*}
& b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w^{2}(z)} \\
= & \frac{P(z, w(z))}{\left(w(z)-d_{1}(z)\right)\left(w(z)-d_{2}(z)\right) \tilde{Q}(z, w(z))}, \tag{6.1}
\end{align*}
$$

where $\operatorname{deg}_{w}(P) \leq 3$ and $\operatorname{deg}_{w}(\tilde{Q}) \leq 1$. Here, there exists the possibility that $\tilde{Q}\left(z, d_{1}(z)\right) \equiv 0$ or $\tilde{Q}\left(z, d_{2}(z)\right) \equiv 0$. We also assume that $P(z, w(z))$ and $\tilde{Q}(z, w(z))$ do not have common roots. Then neither $d_{1}(z)$ nor $d_{2}(z)$ is a solution of (6.1), and so they satisfy the first condition of Lemma 2.2.

Assume that $\hat{z} \in \mathbb{C}$ is a generic root of $w-d_{1}$ of order p, where the generic root has been defined in the proof of Theorem 1.2. Similarly to Case 1 in the proof of Theorem 1.2, next we discuss whether $z=\hat{z}$ is a zero or a pole of $w(z+n)(n=1,2,3)$ or not.

Now, by (6.1), it follows that $w(z+1)$ or $w(z-1)$ has a pole at $z=\hat{z}$ of order at least p. Without loss of generality we may assume that $w(z+1)$ has such a pole at \hat{z}.

Subcase 1.1. Let

$$
\begin{equation*}
\operatorname{deg}_{w}(P) \leq \operatorname{deg}_{w}(\tilde{Q})+2 \tag{6.2}
\end{equation*}
$$

If $p>1$, we obtain

$$
\begin{align*}
& w(z)=d_{1}(z)+\alpha_{1}(z-\hat{z})^{p}+O\left((z-\hat{z})^{p+1}\right), \\
& w(z+1)= \frac{\alpha_{2}}{(z-\hat{z})^{p}}+O\left((z-\hat{z})^{1-p}\right), \\
& w(z+2)=-\frac{c(z+1) d_{1}(z)}{b(z+1)}+\frac{p a(z+1)}{\alpha_{2} b(z+1)} \cdot(z-\hat{z})^{p-1} \\
&-\frac{\alpha_{1} c(z+1)}{b(z+1)}(z-\hat{z})^{p}+O\left((z-\hat{z})^{p+1}\right), \tag{6.3}\\
& w(z+3)=-\frac{\alpha_{2} c(z+2)}{b(z+2)} \cdot \frac{1}{(z-\hat{z})^{p}}+O\left((z-\hat{z})^{1-p}\right), \\
& w(z+4)= \frac{c(z+3) c(z+1)}{b(z+3) b(z+1)} \cdot d_{1}(z)+O\left((z-\hat{z})^{p-1}\right),
\end{align*}
$$

where $\alpha_{j}(j=1,2)$ are non-zero constants. From (6.3), it may be that $w(\hat{z}+$ $2)=d_{j}(\hat{z}+2)$ and $w(\hat{z}+4)=d_{j}(\hat{z}+4)(j=1,2)$, both with the order $p-1$. In addition, we have $w(\hat{z}+5)=\infty$, with the order p. This is the scenario, where there are the least number of poles for the biggest number of roots of $w-d_{j}(j=1,2)$. Namely, if $w(\hat{z}+2) \neq d_{j}(\hat{z}+2)$ and $w(\hat{z}+4) \neq d_{j}(\hat{z}+4)(j=$ $1,2)$, then we have even more poles for every root of $w-d_{1}$. Identical reasoning holds also for the roots of $w-d_{2}$. Hence in this case, we have

$$
\begin{equation*}
n\left(r, \frac{1}{w-d_{1}}\right)+n\left(r, \frac{1}{w-d_{2}}\right) \leq n(r+3, w)+O(1) . \tag{6.4}
\end{equation*}
$$

If $p=1$, we have

$$
\begin{aligned}
& w(z)=d_{1}(z)+\alpha_{1}(z-\hat{z})+O\left((z-\hat{z})^{2}\right), \\
& w(z+1)=\frac{\alpha_{2}}{(z-\hat{z})}+O(1), \\
& w(z+2)=-\frac{c(z+1)}{b(z+1)} \cdot d_{1}(z)+\frac{a(z+1)}{\alpha_{2} b(z+1)}-\frac{\alpha_{1} c(z+1)}{b(z+1)}(z-\hat{z})+O\left((z-\hat{z})^{2}\right), \\
& w(z+3)= \\
& \quad-\frac{\alpha_{2} c(z+2)}{b(z+2)} \cdot \frac{1}{(z-\hat{z})}+O(1), \\
& w(z+4)= \\
& \begin{aligned}
& \frac{c(z+3) c(z+1)}{b(z+3) b(z+1)} \cdot d_{1}(z)+\frac{a(z+3) b(z+2)}{\alpha_{1} c(z+2) b(z+3)}-\frac{a(z+1) c(z+3)}{\alpha_{2} b(z+1) b(z+3)} \\
& +O(z-\hat{z}),
\end{aligned}
\end{aligned}
$$

where $\alpha_{j}(j=1,2)$ are non-zero constants. Similarly as in the case $p>1$, we can still get

$$
\begin{equation*}
n\left(r, \frac{1}{w-d_{1}}\right)+n\left(r, \frac{1}{w-d_{2}}\right) \leq n(r+3, w)+O(1) \tag{6.5}
\end{equation*}
$$

Hence, the second condition of Lemma 2.2 is satisfied again, which yields $\rho_{2}(w) \geq 1$.

Subcase 1.2. Let

$$
\operatorname{deg}_{w}(P)>\operatorname{deg}_{w}(\tilde{Q})+2
$$

If $\operatorname{deg}_{w}(P)=3$, it immediately follows that $\operatorname{deg}_{w}(Q)=2$, and so the assertion (1.12) holds in this case.

Case 2. Suppose that $Q(z, w(z))$ in (1.11) has at least one multiple non-zero rational root, say $d_{1}(z) \not \equiv 0$. Then (1.11) can be written as

$$
\begin{equation*}
b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w^{2}(z)}=\frac{P(z, w(z))}{\left(w(z)-d_{1}(z)\right)^{n} \check{Q}(z, w(z))} \tag{6.6}
\end{equation*}
$$

where $\operatorname{deg}_{w}(P) \leq 3$ and $n+l \leq 3, \operatorname{deg}_{w}(\check{Q})=l$. Then $d_{1}(z)$ is not a solution of (6.6), and thus the first condition of Lemma 2.2 is satisfied for d_{1}. Now we have that $n \in\{2,3\}$, and we moreover suppose that \hat{z} is a generic root of $w(z)-d_{1}(z)$ of order p. Then either $w(z+1)$ or $w(z-1)$ has a pole order $n p$ at least, at $z=\hat{z}$, and we suppose without loss of generality that $w(\hat{z}+1)=\infty$ is such a pole.

Subcase 2.1. Let

$$
\operatorname{deg}_{w}(P) \leq n+l
$$

Since $n>1$, we always have $n p>1$, and so

$$
\begin{aligned}
& w(z)=d_{1}(z)+\alpha_{1}(z-\hat{z})^{p}+O\left((z-\hat{z})^{p+1}\right) \\
& w(z+1)= \frac{\alpha_{2}}{(z-\hat{z})^{n p}}+O(1) \\
& w(z+2)=-\frac{c(z+1) d_{1}(z)}{b(z+1)}+\frac{n p a(z+1)}{\alpha_{2} b(z+1)} \cdot(z-\hat{z})^{n p-1} \\
&-\frac{\alpha_{1} c(z+1)}{b(z+1)}(z-\hat{z})^{p}+O\left((z-\hat{z})^{p+1}\right), \\
& w(z+3)=-\frac{\alpha_{2} c(z+2)}{b(z+2)} \cdot \frac{1}{(z-\hat{z})^{n p}}+O(1), \\
& w(z+4)= \frac{c(z+3) c(z+1)}{b(z+3) b(z+1)} \cdot d_{1}(z)+O\left((z-\hat{z})^{p}\right),
\end{aligned}
$$

where $\alpha_{j}(j=1,2)$ are non-zero constants. From (6.7), it follows that we cannot (at least immediately) rule out the possibility that $w(\hat{z}+2)=d_{1}(\hat{z}+2)$ and $w(\hat{z}+4)=d_{1}(\hat{z}+4)$, both with order at most p. It also follows that $w(\hat{z}+5)=\infty$, with order $n p$. This is the case, where the amount of roots of $w-d_{1}$ is maximal compared to the number of poles of w. Hence in this case, we have

$$
\begin{equation*}
n\left(r, \frac{1}{w-d_{1}}\right) \leq \frac{1}{n} n(r+3, w)+O(1) . \tag{6.8}
\end{equation*}
$$

Hence, the second condition of Lemma 2.2 is satisfied again, which yields $\rho_{2}(w) \geq 1$.

Subcase 2.2. Let

$$
\operatorname{deg}_{w}(P) \geq n+l+1
$$

This case is exactly the same as Subcase 2.2 in the proof of Theorem 1.2, so we get $\rho_{2}(w) \geq 1$.

Case 3. Suppose now that $Q(z, w)$ in the equation (1.11) has only one simple root, say $d_{1}(z) \not \equiv 0$. Then (1.11) can be written as

$$
b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w^{2}(z)}=\frac{P(z, w(z))}{w(z)-d_{1}(z)}
$$

Subcase 3.1. Assume first that

$$
\operatorname{deg}_{w}(P)=3
$$

This case is the same as Subcase 3.1 in the proof of Theorem 1.2, so $\rho_{2}(w) \geq 1$.
Subcase 3.2. Assume that

$$
\operatorname{deg}_{w}(P) \leq 2
$$

If $\operatorname{deg}_{w}(P)=2$, then $\operatorname{deg}_{w}(P)=\operatorname{deg}_{w}(Q)+1$ and thus the assertion (1.12) holds. If $\operatorname{deg}_{w}(P) \leq 1$, then $\operatorname{deg}_{w}(R)=1$.

Case 4. The final remaining case is the one, where $R(z, w(z))$ is a polynomial in $w(z)$. Then (1.11) takes the form

$$
\begin{equation*}
b(z) w(z+1)+c(z) w(z-1)+a(z) \frac{w^{\prime}(z)}{w^{2}(z)}=P(z, w(z)) \tag{6.9}
\end{equation*}
$$

where $\operatorname{deg}_{w}(P) \leq 3$. If $\operatorname{deg}_{w}(P) \leq 1$, then $\operatorname{deg}_{w}(R) \leq 1$.
Assume therefore that

$$
\operatorname{deg}_{w}(P) \geq 2
$$

and suppose first that $w(z)$ has infinitely many poles. By applying the reasoning in the proof of $\left[11\right.$, Lemma 3.2], we get $\rho_{2}(w) \geq 1$.

Suppose now that $w(z)$ has finitely many poles, and that $\rho_{2}(w)<1$. In this case, from (6.9), we get
(6.10) $b(z) w^{2}(z) w(z+1)+c(z) w^{2}(z) w(z-1)+a(z) w^{\prime}(z)=P(z, w(z)) w^{2}(z)$.

Since $\operatorname{deg}_{w}(P) \geq 2$, using the difference analogue of Clunie Lemma [8] with [12, Remark 5.3] implies $m(r, w)=S(r, w)$, so $T(r, w)=S(r, w)$, which is a contradiction. The proof of Theorem 1.6 is completed.

References

[1] M. J. Ablowitz, R. G. Halburd, and B. M. Herbst, On the extension of the Painlevé property to difference equations, Nonlinearity 13 (2000), no. 3, 889-905. https://doi. org/10.1088/0951-7715/13/3/321
[2] B. K. Berntson, Special solutions of bi-Riccati delay-differential equations, SIGMA Symmetry Integrability Geom. Methods Appl. 14 (2018), Paper No. 020, 9 pp. https: //doi.org/10.3842/SIGMA. 2018.020
[3] T.-B. Cao, Y. Chen, and R. Korhonen, Meromorphic solutions of higher order delay differential equations, Bull. Sci. Math. 182 (2023), Paper No. 103227, 28 pp. https: //doi.org/10.1016/j.bulsci.2023.103227
[4] Y. Chen and T.-B. Cao, Meromorphic solutions of a first order differential equations with delays, C. R. Math. Acad. Sci. Paris 360 (2022), 665-678. https://doi.org/10. 5802/crmath. 331
[5] D. K. Demskoi and C.-M. Viallet, Algebraic entropy for semi-discrete equations, J. Phys. A 45 (2012), no. 35, 352001, 10 pp. https://doi.org/10.1088/1751-8113/45/ 35/352001
[6] B. Grammaticos, R. G. Halburd, A. Ramani, and C. Viallet, How to detect the integrability of discrete systems, J. Phys. A 42 (2009), no. 45, 454002, 30 pp. https: //doi.org/10.1088/1751-8113/42/45/454002
[7] B. Grammaticos, A. Ramani, and I. C. Moreira, Delay-differential equations and the Painlevé transcendents, Phys. A 196 (1993), no. 4, 574-590. https://doi.org/10.1016/ 0378-4371 (93) 90035-3
[8] R. G. Halburd and R. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487. https://doi.org/10.1016/j.jmaa.2005.04.010
[9] R. G. Halburd and R. Korhonen, Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. Lond. Math. Soc. (3) 94 (2007), no. 2, 443-474. https://doi. org/10.1112/plms/pdl012
[10] R. G. Halburd and R. Korhonen, Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations, J. Phys. A 40 (2007), no. 6, R1-R38.
[11] R. G. Halburd and R. Korhonen, Growth of meromorphic solutions of delay differential equations, Proc. Amer. Math. Soc. 145 (2017), no. 6, 2513-2526. https://doi.org/10. 1090/proc/13559
[12] R. G. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. https: //doi.org/10.1090/S0002-9947-2014-05949-7
[13] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[14] I. Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, Vol. 15, de Gruyter, Berlin, 1993. https://doi.org/10.1515/ 9783110863147
[15] K. Liu and C. J. Song, Non-linear complex differential-difference equations admit meromorphic solutions, Anal. Math. 45 (2019), no. 3, 569-582. https://doi.org/10.1007/ s10476-019-0990-1
[16] A. Z. Mohon'ko, The Nevanlinna characteristics of certain meromorphic functions, Teor. Funkciŭ Funkcional. Anal. i Priložen. (1971), no. 14, 83-87.
[17] G. R. W. Quispel, H. W. Capel, and R. Sahadevan, Continuous symmetries of differential-difference equations: the Kac-van Moerbeke equation and Painlevé reduction, Phys. Lett. A 170 (1992), no. 5, 379-383. https://doi.org/10.1016/0375-9601(92)90891-0
[18] A. Ramani, B. Grammaticos, T. Tamizhmani, and K. M. Tamizhmani, The road to the discrete analogue of the Painlevé property: Nevanlinna meets singularity confinement, Comput. Math. Appl. 45 (2003), no. 6-9, 1001-1012. https://doi.org/10.1016/S0898-1221(03)00076-2
[19] C. J. Song, K. Liu, and L. Ma, Meromorphic solutions to non-linear differentialdifference equations, Electron. J. Differential Equations (2018), Paper No. 93, 12.
[20] A. Stokes, Singularity confinement in delay-differential Painlevé equations, J. Phys. A 53 (2020), no. 43, 435201, 31 pp. https://doi.org/10.1088/1751-8121/abb724
[21] G. Valiron, Sur la dérivée des fonctions algébroïdes, Bull. Soc. Math. France 59 (1931), 17-39.

Risto Korhonen
Department of Physics and Mathematics
University of Eastern Finland
P.O. Box 111, FI-80101 Joensuu, Finland

Email address: risto.korhonen@uef.fi
Yan Liu
Department of Physics and Mathematics
University of Eastern Finland
P.O. Box 111, FI-80101 Joensuu, Finland

Email address: liuyan@student.uef.fi

[^0]: Received February 16, 2023; Revised April 21, 2023; Accepted June 3, 2023.
 2020 Mathematics Subject Classification. Primary 30D35; Secondary 34K40, 34M55.
 Key words and phrases. Delay differential equations, Painlevé equation, Nevanlinna theory, meromorphic, hyper-order.

 The second author thanks the support of the China Scholarship Council (No. 2020063300 38).

