• Title/Summary/Keyword: von Mises stress

Search Result 532, Processing Time 0.024 seconds

A Study on Stability Estimation of a Orchard Vehicle using Multi-Body Dynamic and Finite Element Analysis (다물체 동역학 및 유한요소 해석을 통한 과수원용 작업차량 안정성 평가에 관한 연구)

  • Han, Chang-Woo;Son, Jae-Hwan;Park, Kee-Jin;Jang, Eun-Sil;Woo, Seung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4142-4148
    • /
    • 2013
  • Because of effective fruit growing and management in the slope land, the use of orchard vehicle with lifting utilities has been increased. For this reason the study on the stability of that vehicle for worker's safety is needed. This study is investigated on the stability estimation of orchard vehicle with four wheels and dual rectangular-type lifting utilities which can be moved on the dirt sloping load. Through the multi-body dynamics analysis on the vehicle mechanism, overturning angles of 19.2 and $34.6^{\circ}$ in the right-left and front-rear direction can be calculated. It is determined tractive resistances and required powers of the wheels. And through the finite element analysis on the frame of lifting utility its maximum von-Mises stress is 146 MPa and it is structural stable. Therefore it is known that the orchard vehicle with wheels and lifting utilities has static and dynamic stability.

A Study on Failure Mode of Pipe Elbows with Wall Thinning (두께 감소된 배관 엘보우의 파손 모드에 대한 연구)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Difference of failure modes was studied by finite element analysis for elbows with local wall thinning area particularly at inner surface of intrados of the elbow. Longitudinal wall thinning length, minimum thickness were kept constant but circumferential wall thinning width was varied to get $90^{\circ}$, $180^{\circ}$ and $360^{\circ}$ thinning width. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending moment closing the elbow. Von Mises stress were obtained from the outer surface central surface location in intrados, extrados and crown parts in elbow. The results showed that the plastic deformation and failure started from the crown location when the thinning width small ($90{\sim}180^{\circ}$). However, plastic collapse started from the intrados location when the thinning width is approaching $360^{\circ}C$. This should be reflected to assess structural integrity of elbows after wall thinning measurement is made.

  • PDF

Behavior of fully- connected and partially-connected multi-story steel plate shear wall structures

  • Azarafrooza, A.;Shekastehband, B.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.311-324
    • /
    • 2020
  • Until now, a comparative study on fully and partially-connected steel shear walls leading to enhancing strength and stiffness reduction of partially-connected steel plate shear wall structures has not been reported. In this paper a number of 4-story and 8-story steel plate shear walls, are considered with three different connection details of infill plate to surrounding frame. The specimens are modeled using nonlinear finite element method verified excellently with the experimental results and analyzed under monotonic loading. A comparison between initial stiffness and shear strength of models as well as percentage of shear force by model boundary frame and infill plate are performed. Moreover, a comparison between energy dissipation, ductility factor and distribution of Von-Mises stresses of models are presented. According to the results, the initial stiffness, shear resistance, energy dissipation and ductility of the models with beam-only connected infill plates (SSW-BO) is found to be about 53%, 12%, 15% and 48% on average smaller than those of models with fully-connected infill plates (SPSW), respectively. However, performance characteristics of semi-supported steel shear walls (SSSW) containing secondary columns by simultaneously decreasing boundary frame strength and increasing thickness of infill plates are comparable to those of SPSWs. Results show that by using secondary columns as well as increasing thickness of infill plates, the stress demands on boundary frame decreases substantially by as much as 35%. A significant increase in infill plate share on shear capacity by as much as 95% and 72% progress for the 4-story SSW-BO and 8-story SSSW8, respectively, as compared with non-strengthened counterparts. A similar trend is achieved by strengthening secondary columns of 4-story SSSW leading to an increase of 50% in shear force contribution of infill plate.

Enhanced Influence Coefficient Matrix for Estimation of Local Ice Load on the IBRV ARAON (쇄빙연구선 ARAON호의 국부 빙하중 추정을 위한 영향계수행렬의 보완)

  • Cho, Sungrok;Choi, Kyungsik;Son, Beomsik;Jeong, Seong-Yeob;Ha, Jung-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.330-338
    • /
    • 2021
  • This paper focuses on the improvement of the influence coefficient matrix method for estimation of local ice load on the icebreaking research vessel ARAON. The influence coefficient matrix relates ice pressure on the hull plate to the measured/calculated hull strain/stress. Conventionally von Mises equivalent stresses representing hull stresses and ice pressure acting on the hull plate are utilized to assemble the influence coefficient matrix. Because of the three dimensional features of the ship-ice collision process, an enhanced method to assemble the influence coefficient matrix is derived considering ice loads in the X, Y, and Z direction simultaneously. Furthermore the location of ice loads acting on hull-plate may fall outside the measuring sensor area, and the enhanced influence coefficient matrix is modified to reduce the difference between the actual and the estimated ice loads by expanding the domain outward from the sensor area. The developed method for enhanced influence coefficient matrix is applied to IBRV ARAON during the 2019 Antarctic ice field test and the local ice loads in three directions are efficiently calculated compared to those by a conventional method.

Stick-slip in Chemical Mechanical Polishing Using Multi-Particle Simulation Models (다수의 연마입자를 고려한 CMP 공정의 Stick-Slip 고찰)

  • Jung, Soyoung;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.279-283
    • /
    • 2018
  • In this study, we investigate the behavior of abrasive particles and change of the stick-slip pattern according to chemical mechanical polishing (CMP) process parameters when a large number of abrasive particles are fixed on a pad. The CMP process is simulated using the finite element method. In the simulation, the abrasive grains are composed of those used in the actual CMP process. Considering the cohesion of the abrasive grains with the start of the CMP process, abrasive particles with various sizes are fixed onto the pad at different intervals so that stick-slip could occur. In this analysis, we determine that when the abrasive particle size is relatively large, the stick-slip period does not change as the pressure increases while the moving speed is constant. However, if the size of the abrasive grains is relatively small, the amount of deformation of the grains increases due to the elasticity of the pad. Therefore, the stick-slip pattern may not be observed. As the number of abrasive particles increases, the stick-slip period and displacement decrease. This is consistent with the decrease in the von Mises yield stress value on the surface of the wafer as the number of abrasive grains increases. We determine that when the number of the abrasive grains increases, the polishing rate, and characteristics are improved, and scratches are reduced. Moreover, we establish that the period of stick-slip increases and the change of the stick-slip size was not large when the abrasive particle size was relatively small.

Development of Engine Clutch Female Flange for Tank Using SNCM439 Material (SNCM439재질의 전차용 엔진클러치 암플랜지 개발)

  • Kim, Joong-Seon;Kwon, Dae-Kyu;Ahn, Seok-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.67-73
    • /
    • 2021
  • Tanks are key weapons of ground combat that are equipped with powerful weapons and have strong protective bodies. One tank component, the engine clutch flange, is located in the part of the tank where the engine and transmission are installed, and it is a key part of the power transfer and shutoff. The engine clutch flange transmits high power to secure the mobility of the tank; thus, it must have high strength and hardness. In addition, high durability and safety must be ensured because tank operations must exclude concerns about damage. In this study, an engine clutch female flange for tanks made of SNCM439 was developed. The 2D design used AutoCAD programs, and the 3D shape design used CATIA programs. The structural analysis was conducted using ANSYS. The mesh grid has a tetrahedron shape and is created by adding a mid-side node. After the mechanical properties and constraints of SNCM439 were entered, the changes in the safety factor, total deformation, and Von-Mises stress were identified according to the increase in torque. Prototype processing was performed to verify the engine clutch female flange for the tank. To determine the productivity of the product, the cutting processing time was measured when processing the prototypes. Based on the results of measuring the cutting processing time, it is concluded that research is needed to improve productivity because MCT slot cutting processing is time consuming.

Application of Patient-Specific 3D-Printed Orthopedic Splint for Bone Fracture in Small Breed Dogs

  • Kwangsik Jang;Eun Joo Jang;Yo Han Min;Kyung Mi Shim;Chunsik Bae;Seong Soo Kang;Se Eun Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.268-275
    • /
    • 2023
  • In this paper, we designed 3D-printed orthopedic splint models for patient-specific external coaptation on fracture healing and analyzed the stability of the models through finite element method (FEM) analysis under compressive load conditions. Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) based 3D splint models of the thicknesses 1, 3, 5 and 7 mm were designed, and Peak von Mises stress (PVMS) and maximum displacement (MD) of the models were analyzed by FEM under compressive loads of 50, 100, 150, and 200 N. The FEM results indicated that PVMS and MD values, regardless of material, had a negative correlation with the thickness of the models and a positive correlation with the compressive load. There was a risk of splint deformation under conditions more extreme than 100 N with 5 mm thickness. For successful clinical application of 3D-printed orthopedic splints in veterinary medicine, it is recommended that the splint should be produced not less than 5 mm thickness. Also, it is expected to be stable when the splint is applied to situations with a compressive load of 100 N or less. There is an advantage of overcoming the limitations of the existing bandage method through 3D-printing technology as well as verifying the stability through 3D modeling before application. Such 3D printing technology will be widely used in veterinary medicine and various fields as well as orthopedics.

Biomechanical analysis for different mandibular total distalization methods with clear aligners: A finite element study

  • Sewoong Oh;Youn-Kyung Choi;Sung-Hun Kim;Ching-Chang Ko;Ki Beom Kim;Yong-Il Kim
    • The korean journal of orthodontics
    • /
    • v.53 no.6
    • /
    • pp.420-430
    • /
    • 2023
  • Objective: The purpose of this finite element method (FEM) study was to analyze the biomechanical differences and tooth displacement patterns according to the traction direction, methods, and sites for total distalization of the mandibular dentition using clear aligner treatment (CAT). Methods: A finite element analysis was performed on four FEM models using different traction methods (via a precision cut hook or button) and traction sites (mandibular canine or first premolar). A distalization force of 1.5 N was applied to the traction site by changing the direction from -30 to +30° to the occlusal plane. The initial tooth displacement and von Mises stress on the clear aligners were analyzed. Results: All CAT-based total distalization groups showed an overall trend of clockwise or counterclockwise rotation of the occlusal plane as the force direction varied. Mesiodistal tipping of individual teeth was more prominent than that of bodily movements. The initial displacement pattern of the mandibular teeth was more predominant based on the traction site than on the traction method. The elastic deformation of clear aligners is attributed to unintentional lingual tipping or extrusion of the mandibular anterior teeth. Conclusions: The initial tooth displacement can vary according to different distalization strategies for CAT-based total distalization. Discreet application and biomechanical understanding of traction sites and directions are necessary for appropriate mandibular total distalization.

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND DISPLACEMENT IN MANDIBLE ACCORDING TO TREATMENT MODALITIES OF MANDIBULAR ANGLE FRACTURES (하악각 골절의 치료 방법에 따른 하악골의 응력 분포 및 변위에 관한 삼차원 유한요소법적 연구)

  • Ku, Je-Hoon;Kim, Il-Kyu;Chang, Jae-Won;Yang, Jung-Eun;Sasikala, Balaraman;Wang, Boon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.207-217
    • /
    • 2010
  • The purpose of this study was to evaluate the effects of the stress distribution and displacement in mandible according to treatment modalities of mandibular angle fractures, using a three dimensional finite element analysis. A mechanical model of an edentulous mandible was generated from 3D scan. A 100-N axial load and four masticatory muscular supporting system were applied to this model. According to the number, location and materials of titanium and biodegradable polymer plates, the experimental groups were divided into five types. Type I had a single titanium plate in the superior border of mandibular angle, type II had two titanium plates in the superior tension border and in the inferior compression border of mandibular angle, type III had a single titanium plate in the ventral area of mandibular angle, type IV had a single biodegradable polymer plate in the superior border of mandibular angle, type V had a single biodegradable polymer plate in the ventral area of mandibular angle. The results obtained from this study were follows: 1. Stress was concentrated on the condylar neck of the fractured side except Type III. 2. The values of von-Mises stress of the screws were the highest in the just-posterior screw of the fracture line, and in the just-anterior screw of Type III. 3. The displacement of mandible in Type III was 0.04 mm, and in Type I, II, IV, and V were 0.10 mm. 4. The plates were the most stable in the ventral area of mandibular angle (Type III, V). In conclusion, the ventral area of mandibular angle is the most stable location in the fixation of mandibular angle fractures, and the just- posterior and/or the just-anterior screws of the fracture line must be longer than the other, and surgeons have to fix accurately these screws, and the biodegradable polymer plate also was suitable for the treatment of mandible angle fracture.

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE IMPLANT FRACTURES

  • Kim Yang-Soo;Kim Chang-Whe;Lim Young-Jun;Kim Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.295-313
    • /
    • 2006
  • Statement of problem. Higher fracture rates were reported for Branemark implants placed in the maxilla and for 3.75 mm diameter implants installed in the posterior region. Purpose. The purpose of this study was to investigate the fracture of a fixture by finite element analysis and to compare different diameter of fixtures according to the level of alveolar bone resorption. Material and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for the 3i implant systems. Models were processed by the software programs HyperMesh and ANSA. Three-dimensional finite element models were developed for; (1) a regular titanium implant 3.75 mm in diameter and 13 mm in length (2) a regular titanium implant 4.0 mm in diameter and 13 mm in length (3) a wide titanium implant 5.0 mm in diameter and 13 mm in length each with a cementation type abutment and titanium alloy screw. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized as 650 N, and round and flat type prostheses were 12 mm in diameter, 9 mm in height were loaded to 600 N. Four loading offset points (0, 2, 4, and 6 mm from the center of the implants) were evaluated. To evaluate fixture fracture by alveolar bone resorption, we investigated the stress distribution of the fixtures according to different alveola. bone loss levels (0, 1.5, 3.5, and 5.0 mm of alveolar bone loss). Using these 12 models (four degrees of bone loss and three implant diameters), the effects of load-ing offset, the effect of alveolar bone resorption and the size of fixtures were evaluated. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView programs were used for post processing. Results. The results from our experiment are as follows: 1. Preload maintains implant-abutment joint stability within a limited offset point against occlusal force. 2. Von Mises stress of the implant, abutment screw, abutment, and bone was decreased with in-creasing of the implant diameter. 3. With severe advancing of alveolar bone resorption, fracture of the 3.75 and the 4.0 mm diameter implant was possible. 4. With increasing of bending stress by loading offset, fracture of the abutment screw was possible.