• Title/Summary/Keyword: volumetric water contents

Search Result 58, Processing Time 0.027 seconds

Effects of Soil Types and Tillage Systems on Soil Water Movement in the Root Zone of Cornfields (옥수수포장의 토양 수분함량에 대한 토성과 경운의 영향)

  • Kim, Won-Il;Jeong, Goo-Bok;Koh, Mun-Hwan;Huck, M.G.;Park, Ro-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.197-206
    • /
    • 2002
  • Volumetric soil water contents through a soil profile were monitored to identify the effects of tillage systems and soil physico-chemical characteristic on soil water movement from the soil profile. Water content profiles under no tillage (NT) and conventional tillage (CT) practices were compared at two commercial farms in central Illinois from 1992 through 1994, using neutron-scattering techniques in weekly intervals during each growing season. The volumetric water content of surface soil layers was affected more by tillage systems and rainfall amounts, whereas that of the subsoil layers was more strongly affected by soil types. Soil water percolated faster through Saybrook and Catlin soils than through Drummer, Flanagan, and Ipava soils because Saybrook and Catlin soils have lower clay content and water-retention capacity and higher permeability than Drummer, Flanagan, and Ipava soils. Increased soil organic matter (SOM) in Drummer, Flanagan, and Ipava soils would be attributable to the higher soil water retention than other soil types. Soil water contents in the corn root zone were consistently higher under CT plots than under NT plots.

Establishment on the Monitoring System for Unsaturated Characteristics Variation in a Mine Waste-Dump Slope (광산폐기물 적치사면의 불포화 특성변화 모니터링 시스템 구축)

  • Song, Young-Suk;Jung, In-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.49-55
    • /
    • 2016
  • Field measurement units and a system were constructed and installed in a waste-dump slope at the Imgi mine to investigate and analyze the variations in the unsaturated characteristics of the soil. The field instrumentation system was composed of a data acquisition system (DAS), a solar system, and measuring sensors. The rainfall, matric suction, and volumetric water contents were continuously measured from the units in the instrumented site. The variations in matric suction and volumetric water content were primarily affected by the rainfall intensity. At the surface of the slope, the largest increase and decrease in the changes in matric suction and volumetric water content were observed during the wetting and drying processes, respectively. Also, the matric suction and volumetric water content were 5-35 kPa and 0.12-0.24, respectively. However, the ground water level was not suddenly increased just after rainfall but gradually increased after 2 or 3 days later.

Precision Measurement of Water Content in Soil Using Dual RF Impedance Changes (고주파의 2개 주파수 임피던스 변화를 이용한 토양내 수분함량 정밀측정)

  • 김기복;김상천;주대성;윤동진
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.369-376
    • /
    • 2003
  • This study was conducted to develop a precision measurement method of water content in soil (find sand and silty sand) using dual RF impedance changes. The electrically stable perpendicular plate capacitive sensor was fabricated and utilized to sense the water content in soil. Crystal oscillators of 5 and 20 MHz and related circuits were designed to detect the capacitance changes of a perpendicular plate capacitive sensor with soil samples at various volumetric water contents. A multiple regression model for volumetric water content having dual oscillation frequency changes at 5 and 20 MHz as independent variables resulted in coefficient of determination of 0.963 and standard error calibration of 0.030 cm$^3$/cm$^3$ for calibration and coefficient of determination of 0.966, standard error of prediction of 0.027 cm$^3$/cm$^3$ and bias of 0.001 cm$^3$/cm$^3$ for prediction.

Development of Buried Type TDR Module for Leak Detection from Buried Pipe (매설관 주변부 누수 탐지를 위한 매설형 TDR 모듈 개발)

  • Hong, Wontaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2021
  • To prevent accidents due to the cavities and loosened layers formed due to water leakage from the deteriorated buried pipes, evaluation of the changes in water contents around the buried pipes is required. As a method to evaluate the water contents of the soils, time domain reflectometry (TDR) system can be adopted. However, slender electrodes used in standard TDR probe may be damaged when buried in the ground. Thus, in this study, buried type TDR module was developed for the evaluation of the water contents with maintaining required shape of the electrodes in the ground. The TDR module is composed of three electrodes connected to the core conductor and outer conductor and a casing to prevent deformation and maintain alignment of the electrodes in the ground. For the verification of TDR waveforms measured using the TDR module, comparative analysis was conducted with the TDR waveforms measured using the standard TDR probe, and the relationship between the volumetric water content of the soils and the travel time of the guided electromagnetic wave was constructed. In addition, a model test was conducted to test the applicability of the buried type TDR module, and the experimental result shows that the TDR module clearly evaluates the changes in volumetric water contents due to the leakage from the modeled buried pipe. Therefore, the buried type TDR module may be effectively used for the health monitoring of the buried pipe and the evaluation of the water contents around the pipes buried in the urban pavements.

Study on Rainfall infiltration Characteristics for Weathered Soils: Analysis of Soil Volumetric Water Content and Its Application (국내 풍화토의 강우 침투특성 분석을 위한 실험연구: 토양 체적함수비 분석 및 적용성 평가)

  • Kim, Man-Il;Chae, Byung-Gon;Cho, Yong-Chan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.83-92
    • /
    • 2008
  • In order to analyze infiltration characteristics of rainfall in soil, two laboratory experiments were conducted using an amplitude domain reflectometry (ADR) sensor and a pore water pressure meter (PWP) in this study. The first experiment is to understand the dependency of volumetric water content and temperature for standard sand and weathered granite soil. The second experiment is a laboratory flume test with changes of rainfall condition. As the results of the dependency experiment, the volumetric water content is increased with increase of the output voltage measured by the ADR sensor in both the standard sands and weathered granite soil. Furthermore, the results also indicate necessity of consideration of the temperature dependency under the condition of high volumetric water contents from 0.15 to 0.45. In the flume test, two measurement devices are detected to the variation of volumetric water content and pore water pressure at the installation point of the flume. In especial, the measured values of ADR4 and PWP3 installed on the lower part of slope are higher than those of the others. It means that the lower part of slope plays a role of a runoff face and a beginning point of slope failure.

Infiltration Characteristics for Unsaturated Residual Soil (화강풍화토의 불포화 침투특성에 관한 연구)

  • 김영욱;김도형;성상규;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.147-152
    • /
    • 2001
  • This study investigated one-dimensional vertical infiltration to an unsaturated residual soil by numerical solutions, FDM. In order to estimate the parameters needed for numerical analysis, tire soil-water characteristic curve(SWCC) of Shinnae-dong soil, one of the most typical residual soils in Korea, were experimentally obtained. Then, the statistical analysis for obtaining the SWCC was performed. The numerical solution to the linearized governing equation for unsaturated groundwater flow provides the infiltration characteristics for the unsaturated residual soil represented by transient pressure profiles and water contents profiles.

  • PDF

An analysis of rainfall infiltration characteristics on a natural slope from in-situ monitoring data (현장 계측을 통한 자연사면에서의 강우 침투 특성 분석)

  • Kim, Woong-Ku;Chang, Pyoung-Wuck;Cha, Kyung-Seob
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.375-380
    • /
    • 2005
  • In Korea, most landslides are occurred during the rainy season from June to September and have a shallow failure plane parallel to the slope. For these types of rainfall-induced failures, the most important factors triggering slope unstability is not the increase of pore water pressure but the decrease of the matric suction of unsaturated soils by rainfall infiltration. So it is essential to landslide hazard assessment that defines the characteristics of infiltration in natural slopes. In this study, field measurements have been carried out in order to monitor in-situ volumetric water contents and ground water table, at several depths and locations on a natural slope. The results show that rainfall infiltration is correlated with antecedent water contents, rainfall intensity and total rainfall. The ground water table was varied sensitively by every rainfall event.

  • PDF

Analysis of rainfall infiltration characteristics for unsaturated soils using a column test equipment (모형실험장치를 이용한 불포화토의 강우 침투특성 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.736-742
    • /
    • 2010
  • This study was conducted to characterize on the relationships of rainfall intensity and infiltration rate of rainfall dependent on unit weight change in the gneissic weathered soil by a column test equipment. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at regular time intervals. Rainfall conditions including continuous rainfall and repeated rainfall were selected in order to know the effect of antecedent rainfall. In the condition of rainfall intensity 20mm/h and the unit weights of soil as $1.35g/cm^3$, $1.55g/cm^3$ and $1.61g/cm^3$, average rainfall infiltration rate was $2.814{\times}10^{-3}cm/sec$, $1.969{\times}10^{-3}cm/sec$ and $1.252{\times}10^{-3}cm/sec$ respectively. The higher rainfall intensity and lower unit weight of soil, the faster average infiltration rate. Overflow in the column was happened except rainfall condition of rainfall intensity 20mm and soil unit weight $1.35g/cm^3$. Increasing the soil unit weight, overflowed water was increased and occurrence time was faster.

  • PDF

Non-absorbable Gas Effects on Heat and Mass Transfer in Falling Film Absorption

  • Kim, Byongjoo;Lee, Chunkyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.581-589
    • /
    • 2003
  • Film absorption involves simultaneous heat and mass transfer in the gas-liquid system. While the non-absorbable gas does not participate directly In the absorption process. its pretence does affect the overall heat and mass transfer. An experimental study was performed to investigate the heat and mass transfer characteristics of LiBr-H$_2$O solution flow ing over 6-row horizontal tubes with the water vapor absorption in the pretence of non-absorbable gases. The volumetric concentration of non-absorbable gas, air, was varied from 0.17 to 10.0%. The combined effects of the solution flow rate and its concentration on the heat and mass transfer coefficients were also examined. The presence of 2% volumetric concentration of air resulted in a 25% reduction in the Nusselt number and 41% reduction in the Sherwood number Optimum film Reynolds number was found to exist at which the heat and mass transfer reach their maximum value independent of air contents. Reduced Nusselt and Sherwood numbers. defined as the ratio of Nusselt and Sherwood numbers at given non-absorbable gas content to that with pure water vapor, were correlated to account for the reduction in the heat and mass transfer due to non-absorbable gases in a falling film absorption process.

Measurements of Soil Water Characteristics for Different Unsaturated Soils (불포화토의 함수특성 측정)

  • Kim, Sang-Gyu;Ryu, Ji-Hyeop;Song, Jin-Gyu
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.139-152
    • /
    • 1996
  • In order to treat flow problems for unsaturated soils, it is necessary to obtain the soil-water characteristic curves which show nonlinear relationship between metric suction and volumetric water content. With two different pleasuring devices, measurements of the matric suction were taken for Jumoonjin sand, Hangang sand, and weathered granite soils with different fined. Experimental parameters which can describe experimental formulas for the soil-water characteristics were determined by using the data obtained from the experiment. Among experimental formulas of previous researchers, that of van Genuchten(1980) agreed well with the results of experiments. For weathered granite soils, the parameters increased with the increase of fine contents, Therefore, the soil-water characteristic for a weathered soil can be estimated by using Parameters corresponding to its fine contents.

  • PDF