• Title/Summary/Keyword: volume.

Search Result 27,966, Processing Time 0.045 seconds

TF color mapping for direct volume rendering with CNN (직접 볼륨 렌더링을 위한 CNN 기반 TF 색상 매핑)

  • Kim, Seokyeon;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.25-32
    • /
    • 2021
  • Direct Volume Rendering(DVR) renders by projecting data into a two-dimensional space without calculating the volume surfaces. In DVR, the transfer function(TF) assigns light properties such as color and transparency to the volume. However, it takes a long time for beginners to manipulate TF to understand volume data and assign colors. This paper proposes an approach to colorize the volume using sample images for intuitive volume rendering. We also discuss color extraction methods using K-means clustering.

Correlation between tumor regression grade and rectal volume in neoadjuvant concurrent chemoradiotherapy for rectal cancer

  • Lee, Hong Seok;Choi, Doo Ho;Park, Hee Chul;Park, Won;Yu, Jeong Il;Chung, Kwangzoo
    • Radiation Oncology Journal
    • /
    • v.34 no.3
    • /
    • pp.186-192
    • /
    • 2016
  • Purpose: To determine whether large rectal volume on planning computed tomography (CT) results in lower tumor regression grade (TRG) after neoadjuvant concurrent chemoradiotherapy (CCRT) in rectal cancer patients. Materials and Methods: We reviewed medical records of 113 patients treated with surgery following neoadjuvant CCRT for rectal cancer between January and December 2012. Rectal volume was contoured on axial images in which gross tumor volume was included. Average axial rectal area (ARA) was defined as rectal volume divided by longitudinal tumor length. The impact of rectal volume and ARA on TRG was assessed. Results: Average rectal volume and ARA were 11.3 mL and $2.9cm^2$. After completion of neoadjuvant CCRT in 113 patients, pathologic results revealed total regression (TRG 4) in 28 patients (25%), good regression (TRG 3) in 25 patients (22%), moderate regression (TRG 2) in 34 patients (30%), minor regression (TRG 1) in 24 patients (21%), and no regression (TRG0) in 2 patients (2%). No difference of rectal volume and ARA was found between each TRG groups. Linear correlation existed between rectal volume and TRG (p = 0.036) but not between ARA and TRG (p = 0.058). Conclusion: Rectal volume on planning CT has no significance on TRG in patients receiving neoadjuvant CCRT for rectal cancer. These results indicate that maintaining minimal rectal volume before each treatment may not be necessary.

A Earth-Volume Estimate Model by System Dynamics (시스템 다이내믹스를 활용한 토공량 산정 모형 구축)

  • Hwang, Young-Jo;Won, Seo-Kyung;Han, Choong-Hee;Kim, Sun-Kuk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.467-470
    • /
    • 2006
  • The earth volume which is the basis of all the construction has gone through great development so far with the use of construction machine; however, systematic studies on the related area is in need since the appropriate compound engineering method of earth volume equipments which is a key factor for shortening the project duration and cost reduction is not systematically established and it is dependent on experience. Reasonable mechanical earth volume should take into consideration of performance and characteristics of the equipment, the kind of project, scale and conditions in advance. Also, the optimum compound engineering should be planned by selecting several available scales of equipment. In this study, the earth volume estimate model is established for optimum compound engineering of earth volume equipment for mechanized earth volume equipment loading and moving stage among many stages of earth volume task using system dynamics technique. The optimum compound engineering model of the earth volume equipment produced as a result of this is expected to make reasonable decisions in the shortest time in selecting earth volume facility.

  • PDF

Estimation of Crosswalk Pedestrian Volume at Signalized Intersection (신호교차로 횡단보도 보행량 추정에 관한 연구)

  • 하태준;김정현;박제진
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.121-134
    • /
    • 2003
  • Forecasting models for crosswalk pedestrian volume, which consider safety of crosswalks and good traffic operation accidents, have been established in order to reduce total number of crosswalk pedestrian accidents. However, the existing models did not include pedestrian volume which seemed to be very significant in the forecasting models because there were no pedestrian volume related data and no methods of estimating pedestrian volume. This paper presents estimating models for the total number of trips, which are produced in zone i and attracted to zone j, and a process of estimating pedestrian volume in the goal year. First of all, the estimating models included the characteristics of land-use around a signalized intersection and the crosswalk pedestrian volume as factors. Secondly, the estimated crosswalk pedestrian volume was distributed to the crosswalk pedestrian volume each path in the basic year by friction factors of Gravity Model, adjustment factors for area and ratio of pedestrian volume who moved diagonally at the crosswalk. Thirdly, the estimating models of crosswalk pedestrian volume in the goal year were presented by using the distributed crosswalk pedestrian volume.

A Study of Construction and Edition on "Yumunsachin(儒門事親)" ("유문사친(儒門事親)"의 판본과 구성에 관한 연구)

  • Kim, Ki-Wook;Park, Hyun-Kuk;Seo, Ji-Young
    • Journal of Korean Medical classics
    • /
    • v.21 no.1
    • /
    • pp.205-222
    • /
    • 2008
  • "Yumunsachin(儒門事親)" is a very important work that contains everything of Jangjahwa(張子和)'s medical thought. The book was made into present form after the process of change several times. These days the printed book is consist of 10 classes and 15 volumes that combine several books. Original "Yumunsachin(儒門事親)" was the name of volume 1, 2, 3, "Chibyeongbaekbang(治病百法)" volume4, 5, "Siphyeongsamnyo(十形三標)" volume 6, 7, 8, "Japgigumun(雜記九門)" volume 9, "Chwalyodo(撮要圖)" volume 10, "Chibyeongbaekbang(治病雜論)" volume 11, "Sambeop-yukmun(三法六門)" volume 12, "Samsoron(三消論)" volume 13, "Chibeoppillyo(治法心要)" volume 14, and "Sinhyomyeongbang(神效名方)" volume 15. "Yumunsachin(儒門事親)" is a collection of a few books so, the literary style isn't uniform. The unconformity show that "Yumunsachin(儒門事親)" was not written by one person. The problem who is the writer of each volume remains controversial. But most scholars recognize that volume 1, 2, 3, original "Yumunsachin(儒門事親)" and was written by Jangjahwa(張子和), embellished by Majigi(麻知幾). Also, it is recognized that "Samsoron(三消論)" was collected by Majigi(麻知幾) and inserted by posterity, and that Sangjungmyeong(常仲明) and Nangi(欒企) who were Jang[張子和]'s disciples participated in compilation of "Yumunsachin(儒門事親)". Therefore, it is sure that the contents of the book express Jangjahwa(張子和)'s medical thought.

  • PDF

The Effect of Volume Reduction on Computed Treatment Planning during Head and Neck IMRT and VMAT (두경부 IMRT 및 VMAT 시 체적 감소가 전산화치료계획에 미치는 영향)

  • Ki-Cheon Um;Gha-Jung Kim;Geum-Mun Back
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.239-246
    • /
    • 2023
  • In this study, we assessed the effect of reduction of tumor volume in the head and neck cancer by using RANDO phantom in Static Intensity-Modulated Radiation Therapy (S-IMRT) and Volumetric-Modulated Arc Therapy (VMAT) planning. RANDO phantom's body and protruding volumes were delineated by using Contour menu of Eclipse™ (Varian Medical System, Inc., Version 15.6, USA) treatment planning system. Inner margins of 2 mm to 10 mm from protruding volumes of the reference were applied to generate the parameters of reduced volume. In addition, target volume and Organ at Risk (OAR) volumes were delineated. S-IMRT plan and VMAT plan were designed in reference. These plans were assigned in the reduced volumes and dose was calculated in reduced volumes using preset Monitor unit (MU). Dose Volume Histogram (DVH) was generated to evaluate treatment planning. Conformity Index (CI) and R2 in reference S-IMRT were 0.983 and 0.015, respectively. There was no significant relationship between CI and the reduced volume. Homogeneity Index (HI) and R2 were 0.092 and 0.960, respectively. The HI increased when volume reduced. In reference VMAT, CI and R2 were 0.992 and 0.259, respectively. There was no relationship between the volume reduction and CI. On the other hand, HI and R2 were 0.078 and 0.895, respectively. The value of HI increased when the volume reduced. There was significant difference (p<0.05) between parameters (Dmean and Dmax) of normal organs of S-IMRT and VMAT except brain stem. Volume reduction affected the CI, HI and OAR dose. In the future, additional studies are necessary to incorporate the reduction of the volume in the clinical setting.

Estimation of Merchantable Volume Ratio by Major Species (주요 수종별 재적의 상업적 이용율 추정)

  • Son, Yeong Mo;Kang, Jin Taek;Won, Hyun Kyu;Jeon, Ju Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.330-335
    • /
    • 2016
  • This study was conducted to derive merchantable volume ratio for 5 major species such as Pinus Densiflora (Central Region). The data used for this study was from at least more than 1,300 trees of research data throughout the country. the study applied two estimation equations, which were the estimation equation for wood volume ratio representing total wood volume to total tree stem volume and the estimation equation for merchantability representing ratio of merchantable volume to total wood volume. The merchantable volume ratio was derived by multiplying those two estimation equations. In order to gain wood volume ratio(W) from DBH, $W=\frac{a_1}{1+a_2/D}+\frac{b_1}{1+b_2/D}$ model was used. Fitness index of it was more than 99% by species, and other test statistics also indicated the suitability of this equation enough. Merchantability (M) for wood volume applied $M=e^{a_1\(\frac{d}{D}\)^{a_2}}-(b_0+b_1D+b_2D^2+b_3D^3)$ model and fitness index was more than 96% by species. Merchantable volume ratio was assessed using those two estimation equations by each 5 species, and constructed a merchantable volume ratio table. In result, merchuntable volume ratio was little difference between stand types, but there was slightly different with the existing standard such as conifers of 85% and non-conifers of 70%.

Relation between Various Body Fluid Volumes and Body Weight or Lean Body Mass in the Rats (흰쥐의 체액량과 체중 및 무지방 체중 사이의 관계)

  • Ahn, Hyung-Che;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1969
  • Relationships between red ceil volume $(^{51}Cr-cell)$, total blood volume (red cell volume divided by hematocrit ratio), and extracellular fluid volume (SCN distribution space) and body weight (ranging between 73 and 384 grams) or lean body mass were studied in 59 nembutalized rats. Lean body mass was determined by means of underwater weighing method on rats clipped and eviscerated. There were positive correlations between body weight or lean body mass and the absolute values (in milliliters) of body fluid volumes. Body fluid volumes expressed on the body weight or lean body mass basis, however, showed negative correlations between body weight (grams) or lean body weight (grams) with one exception. Red cell volume expressed as % lean body mass showed a positive correlation with lean body mass. The other results are summarized as follows: 1. Body density of rats was 1.0561 $(range:\;1.0123{\sim}1.0781)$ and 19.8% body weight of total body fat was obtained. The mean value of lean body mass was 80.2% body weight 2. The correlation between body weight and lean body mass was high, namely, coefficient of correlation was r=.99. 3. The correlation between the absolute value of red cell volume (ml) and body weight showed a high correlation, namely, r= 92 and between the lean body mass coefficient of correlation was r=.93. On a weight basis, red cell volume was 2.67 ml/100 gm body weight or 3.48 ml/100 gm lean body mass. The coefficient of correlation between body weight (grams) and red cell volume (% body weight) was r=-. 30. The coefficient of correlation between lean body mass (grams) and red cell volume (% lean body mass) was r=. 50. Thus, the following regression equation was obtained. Red cell volume (% lean body mass)=. 00243 Lean body mass (gm)+3. 12. 4. Total blood volume was 6.06% body weight or 7.83% lean body mass. The correlation between these blood volume values and body weight or lean body mass were negative, namely, r= -.43 and r=-.42 respectively. 5. Extracellular volume (SCN space) was 30.0% body weight or 37.2% lean body mass. These percentage values showed negative correlations between body weight or lean body mass and coefficients of correlation were r=-.40 and r=-.54 respectively. 6. The rate of increase in body weight or lean body mass is accompanied by a smaller rate of increase in blood volume and extracellular fluid volume. The rate of increase in red ceil volume paralled that of lean body mass.

  • PDF

A Quantitative Ultrastructural Study on the Effects of Ischemia and Reperfusion on the Rat and Cat Hearts (허혈 및 재관류가 흰쥐 및 고양이 심장에 미치는 영향에 관한 형태계측학적 연구)

  • Park, Young-Sik;Uhm, Chang-Sub;Suh, Young-Suk
    • Applied Microscopy
    • /
    • v.22 no.1
    • /
    • pp.42-54
    • /
    • 1992
  • To understand the structural changes of the myocardial myocytes and endothelial cells in ischemic and reperfused heart, and to elucidate their roles in those conditions, the authors observed cat and rat myocardium ultrastructurally and evaluated them with morphometric techniques. In cat, mild ischemia and moderate degree reperfusion injury was induced by ligation of the anterior interventricular branch of left coronary artery and reperfusion. In rat, severe ischemia and irreversible reperfusion iniury was made using in vitro Langendorff techniques. In normal cat myocytes, the volume densities of cytoplasm, myofibrils, mitochondria, sarcoplasmic reticulum and T tubules were $0.11{\pm}0.013,\;0.51{\pm}0.096,\;0.25{\pm}0.082,\;0.09{\pm}0.008,\;0.02{\pm}0.010$ (Mean${\pm}$S.D.) respectively, and the myofibril/mitochondria ratio was $2.33{\pm}1.379$. The numerical density and average volume of mitochondria were $0.76{\pm}0.210/{\mu}m^3$ and $0.33{\pm}0.057{\mu}m^3$ respectively. In normal cat endothelial cells, the volume densities of cytoplasm, cytoplasmic vesicles, tubular systems (including endoplasmic reticulum and Golgi apparatus) and mitochondria were $0.43{\pm}0.023,\;0.28{\pm}0.007,\;0.22{\pm}0.021,\;0.03{\pm}0.014$ respectively. The mean thickness of endothelial cells was $230{\pm}45.2{\mu}m$. The numerical density and average volume of cytoplasmic vesicles were $508{\pm}55.0/{\mu}m^3,\;578{\pm}104.8nm^3$ respectively. In cat myocytes which received mild ischemic injury, the volume densities of organelles were not changed significantly in ischemic and reperfusion states. In reperfusion group myocytes, the numerical density of mitochondria was decreased significantly and the average volume was increased significantly. In endothelial cells, the volume density of tubular system in ischemic group and the average volume of cytoplasmic vesicles in reperfusion group were increased significantly. In rat myocytes which received severe ischemic injury, the volume density and average volume of mitochondria were increased significantly, and the volume density of sarcoplasmic reticulum and numerical density of mitochondria were decreased significantly in both ischemic and reperfusion groups. In ischemic and reperfused endothelial cells, the volume density and numerical density of cytoplasmic vesicles, the volume density of cytoplasm were decreased significantly. The volume densities of tubular system were increased significantly in both ischemic and reperfused groups. The volume density of mitochondria in ischemic group and the average volume of cytoplasmic vesicles in reperfusion group showed significant increase. The authors, based on the above observations, conclude that the mitochondria of myocytes and the cytoplasmic vesicles of endothelia are the first group of targets in ischemic and reperfusion injury and in this respect, the degree of ischemic insult is not significant. The role of myocyte mitochondria in reperfusion injury may be insignificant, but endothelial cells may contribute actively to reperfusion injury.

  • PDF