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THE VOLUME/DIAMETER RATIO
PINCHING SPHERE THEOREMS

JONGKOOK YUN

1. Introduction

In this paper, M will always denote an n- dimensional complete
Riemannian manifold and w,, is the volume of 57.

Wu [Wu] showed that if K(M) > 1, then 1;(15‘%) < =2 and the

equality holds iff M is isometric to S™ or P". Here we come across a

natural question , that'is , what can we say about M if AK(M) > 1 and

% is sufficiently close to =& ?

This paper is concerned with this problem and we established the
following pinching theorem:

THEOREM A. Given an integer n > 2, there exists € > 0 such that if

M is an n- dimensional Riemannian manifold with K(M) > 1,22 —¢ <

”;(I(A%) < £, then M is diffeomorphic to S™ or P".

In 1988, Durumeric proved the following theorem: Let (M., g;) be a
sequence of smooth Riemannian metrics with 1 < K(M, gx) < K, d(M,
gx) converging to T and vol(M, gx) converging to “#. Then there exists
a subsequnce converging to (P", can) in the Hausdorff-Lipschitz sensc.
Now we can see that the proof of Theorem A imaplies that the above
theorem can be generalized.

Generally, under Ric(M) > n — 1, the inequlity in the [Wu] is
not true, but we may obtain some analogous results by pinching the

excess of M. Recall that the excess of M is defined by ¢(M) =
min, ,c Mmaxzemep o(x) , where e, (r) = d(p.z) + d(q,x) — d(p.q).
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THEOREM B. Given an integer n > 2, there exists ¢ > () such that if
M is an n- dimensional Riemannian manifold with n —1 < Ric(M) <

C,=n —¢< U;'g\y and e(M) < ¢ , then M is diffeomorphic to S™.

Recall that under Ric(M) > n — 1, if vol(M) is close to w,, then it
follows immediately that d(M) is close to 7 and e(M) is close to zero.
So in the above theorem, the volume/diameter ar.d excess conditions
can be repalced by volume condition

THEOREM C. Given an integer n > 2, there exists ¢ > 0 such
that if M is an n- dimensional Riemannian manifold with Ric(M) >

n—1LKM)>keR% —c< 200 and (M) < ¢, then M is

diffeomorphic to S™.
By the proof of Theorem C, we have

THEOREM D. Given an integer n > 2, there exists ¢ > 0 such that
if M is an n- dimensional Riemannian manifold with Ric(M) > n —

L#a —¢ < v—;(l%%l and e(M) < ¢, then M is homeomorphic to S™.

Using C“-compactness theorem in [AC|, we easily obtain
THEOREM E. Given an integer n > 2, there exists ¢ > 0 such

that if M is an n- dimensional Riemannian manifold with Ric(M) >

n—Linj(M) > p > 0,4 — ¢ < 2500 and ¢(M) < ¢, then M is

diffeomorphic to S™.

2. Proof of the theorems

Throughout this section, we adopt the convention that if p € M ,
then By(r) = {r € M : d(z,p) < r} and B(r) is the metric r ball in S".
Recall that the Bishop-Gromov volume comparison theorem says that

if Ric(M) > n — 1, then vol(B(r)) > vol(B,(r)) for each r.

Proof of Theorem A. Suppose not! Then there exists a sequence of
manifolds M; such that K(M;) > 1,% — 2 and M, is neither
diffeomorphic to S™ nor P". By passing to a subsequece ,if necessary,
we may assume d(M;) < § for all 4 or d(M;) > T for all <.
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Cask 1. d(M;) < T for all 7 : Note that there cxists a space M such
that M; — M in the Gromov-Haussdorff topology. let { = d(M) Then
d(M;) =:1; = 1 < % and we have vol(M;) — =21, or

vol(M;) fU sin™~ ! rdr < l;

Wy [ sin® lrdr T 7

l
-

Thus .
. n—1 i T . op—
Jysin™ " rdr _ Jy sin™ " rdr

l T

x Sinn»—l

Now since f(zx) = p s StI‘l(‘tl} increasing function of «{< %),
we have | = Z and vol(M;) — #&. Now by [OSY], we have M; is

diffeomorphic to P™ for large ¢ ,which is a contradiction.

CASE 2. d(M;) > Z for all 7 : In Lemma 3.2 of [GP], we have the
following: Suppose M; — X in the Gromov-Haussdorff topology and
K(M;) > 1.d(M;) = D € [§,7],vol(M;) — —vcl(S") and M; # P",
then D must be 7. The proof of this relies esserrtlally on the volume
limit argument and a slight modification of this proof makes it possible
to say that “d(M;) = D" above can be replaced by “d(M;) — D™.
Consequently, we have in our situation that vol(M;) — vol(S™) an dM;
is diffeomorphic to S™ for large ¢ .which is a contradiction. [

Let M be a complete Riemannian manifold with Ric(M) > n —
1,e(M) = 0. Then it is easy to see that M = Bp(a) U By(3) for any
a>0,3>0with a+ 8 = dM) and ¢, 4(x) = 0 for every « € M.
Note that d(M) = d(p,q) , since d(M) < e(M) + d(p.q), if ¢(M) =
max e, o(x). Similarly, if M is a complete Riemanman manifold with
Ric(M) > n—1,e(M) < ¢, then we have M = B,(a + £)U B,(5 + 3),
where (M) = max ¢, (z) and o + 3 = d(p, q).

Proof of Theorem B. Consider a sequence of manifolds M; such that
n—1< RiefM;) < C,=s —¢; < l;(l(w/[‘?')) and e{M;) < ¢; ,where
lim; ,¢; =0,¢; > 0. Pdssmg to a subsequence 1 necessary, we assume
that d(M;) < § for all « or d(M;) > 7 for all «.

CASE 1. d( M;) > I for all i : Let p;,¢; be the points satisfying
max €, () = e(M;), and put d; = d(p;,¢;). From d(M;) < e(M;) +
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d(pi, ¢i) , it follow immediately that d := lim; o d; = lim; .. d(M;) >
Z- So we can choose «;, 3; so that a; + §; = d; and a; T2:6:7 d3.
Now we have

vol(M;)

1 . .
d(M;) —'J: vol( By, («; '2‘))+vol( q;(sz"r—j))}

IA

)ol(B(ai %))4 vol( B(ﬁ, —-i))}
S 8i+

! /a‘+ "1 tdt + [ G
= — < wn_ tdt + W sin ,
di 1 0 " 1./0

a; Bs
i / sin™ ! tdt +/ sin® " tdt y + 6
di 0 0
Wn— t T 6)1' i .o .
< Yn-l {2—/ sin® ! tdt + L/ sm"—ltdt} +6;
d; * Jo © Jo

where 6; — 0 as ¢ — oo. Since %(I—(-A‘—/}% — 3 we obtain by letting

t — oo, that -— 7r/2 fd "2 gnm tdt = %fow sin" ! tdt. Consequently,
—m/2=m/20r d = 7. So vol(M;) — w, and the result follows by
[AC].
CASE 2. d(M;) < Zforall i : In this case, we observed that df M;) —

% previously. Under the same setting as in case 1, choose «;, 3; so that

a; Tn/3,8;1 7/6. Then we have

vol(M;)  wn_i /a-' met b
— < T tdt sin” 7" tdt 6
d(]\l,‘) ST { ; Sin + /, sin +

; . o T . B T . .
< Ynoi {_1/ sin™ ! tdt + ’——'/ sin™ ™! tdt} + &
dz ™ Jo ™ Jo

Wn

s

By letting ¢ — oo, we have a contradiction to tae strict increasing
property of f(z) = lﬂ“—”’r(o <z< %) O
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Proof of Theorem C. The result can be easily obtained by the same
argument as theorem B together with theorem A in [Y] which states
that any complete Riemannian n-manifold with Ric(M) > n—1, K(M)
>k € R and vol(M) close to w, is isometric to $*. O

Proof of Theorem D. Recall that Perelman [P] showed that any com-
plete n— manifold with Ric(M) > n — 1 and vol(M) close to w, is
homeomorphic to S™. This result together with the proof of theorem
C says the result is true. O

LEMMA. Let M be an n-dimensional complete Riemannian manifold
with Ric(M) > n — 1,e(M) = 0. Then vol(M)/d(M) < =& and the
equality holds iff M is isometric to S".

Proof. CASE 1. d(M) < Z: In this case, vol(M)/d(M) < == fol-
lows from the same argument in Theorem A, and we observed that
vol(M)/d(M) = *2 implies d(M) = . So

wn

vol( M) 1 g .o 50T
— = 00 S7r_/2{“‘”(B('é))J”"”(B(s)}

2 % oon—1 % con-—1
—wq sin tdt + sin tdt
Ll 0 0

2 6 [ /3 (5
< —wy {ZT—/— / sin®~!tdt + z/— / sin™ ! tdt}
™ e 0 m 0

wn

IN

L]
w

which is a contradiction.

CAsE 2. d(M) > % : Let d = d(M). Then

vol(M) 1 a T vol(Bld—
d(M) ‘d{UOZ(B(z)H (B(d 2))}

1 £3 -3 .
< =wp / sin"“ltdt+/ sin" " tdt
d 0 0

< .‘*_"{1/_2/ sin™ ! tdt + d"ﬂB/ sin"—‘tdf}
d T Jo T 0

Wn

T
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Thus the equality holds iff d — 5 = %, thatis, d = ir. So M is isometric
to §™, by the Cheng’s maximal diameter theorem, which states that any
complete Riemannian manifold with Ric(M) < n --1 and d( M) =m1is
1sometric to S™. O

Proof of Theorem E. This is an immediate consequence of the above
lemma and C* -compactness theorem in [AC], which states that given
any sequence of compact Riemannian manifolds (M;, ¢;) such that Ric
(M:) > n—1.4nj{M;) > p > 0,vol( M) < V. and given any fixed a < 1.
there is a compact manifold M, and diffeomorphisms fi M — M, for
a subsequence {j} of {1}, such that the metrics f*g, converge in the C?
topology for 3 < «, to a Riemannian manifold (M, ¢) with C'® metric
g. O
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