• Title/Summary/Keyword: voltage-controlled current source

Search Result 223, Processing Time 0.034 seconds

High-linearity voltage-controlled current source circuits with wide range current output (넓은 범위의 전류 출력을 갖는 고선형 전압-제어 전류원 회로)

  • 차형우
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.89-96
    • /
    • 2004
  • High-linearity voltage-controlled current sources (VCCSs) circuits for wide voltage-controlled oscillator and automatic gain control are proposed. The VCCS consists of emitter follower for voltage input, two common-base amplifier which their emitter connected for current output, and current mirror which connected the two amplifier for large output current. The VCCS used only five transistors and a resistor without an extra bias circuit. Simulation results show that the VCCS has current output range from 0㎃ to 300㎃ over the control voltage range from 1V to 4.8V at supply voltage 5V. The linearity error of output current has less than 1.4% over the current range from 0A to 300㎃.

Development of a voltage-controlled output current source for zenor diode degradation analysis (제너다이오드의 열화평가를 위한 전압제어 출력 전류원 개발)

  • Kim, Jong-ho;Chang, Hong-ki;Kwon, Young-mok;Che, Gyu-shik
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.501-507
    • /
    • 2017
  • When zenor diode load current is necessary to be controlled by input voltage as a circuit load, existing voltage controlling method cannot be applied to it because the output current of zenor diode is changed due to breakdown voltage variations. We propose input voltage controlled output current source regardless of zenor breakdown voltage variation due to degradation resulted from severe current applied electronic component life test as a circuit load in this paper. We show breakdown voltage characteristics of this zenor diode circuit through simulation, applying adequate values for each component in order to verify the circuit composed of that method, and then show the result in which output current is controlled by input voltage. We confirmed the output current varies proportional to input voltage, and developed circuit shows a constant value independent of zenor diode breakdown voltage variations due to component degradations.

Operational Characteristics of a Flux-Lock Type SFCL Integrated with Voltage-Controlled Voltage Source Inverter

  • Lee, Su-Won;Lim, Sung-Hun;Ko, Sung-Hun;Lee, Seong-Ryong
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.546-551
    • /
    • 2008
  • In this paper, a flux-lock type superconducting fault current limiter(SFCL) integrated with a voltage-controlled voltage source inverter(VC-VSI) is proposed. The suggested equipment, which consists of a flux-lock type SFCL and a VCVSI, can perform the fault current limiting operation from the occurrence of a short-circuit. In addition, it can compensate the reactive power that the non-linear load requires and also perform the uninterruptible power supply(UPS) as well as the load voltage stabilization by controlling the amplitude and the phase of the inverter's output voltage. The specification for a test model was determined and its various functions such as the fault current limiting and the power conditioning operations were presented and analyzed via computer simulation. Through the analytical results based on the computer simulation, the validity of the analysis was confirmed and its multi-operation was discussed.

Three-Phase Current Source Type ZVS-PWM Controlled PFC Rectifier with Single Active Auxiliary Resonant Snubber and Its Feasible Evaluations

  • Masayoshi Yamamoto;Shinji Sato;Tarek Ahmed;Eiji Hiraki;Lee, Hyun-Woo;Mutsuo Nakaoka
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.127-133
    • /
    • 2004
  • This paper presents a prototype of three-phase current source zero voltage soft-switching PWM controlled PFC rectifier with Single Active Auxiliary Resonant Commutated Snubber (ARCS) circuit topology. The proposed three-phase PFC rectifier with sinewave current shaping and unity power factor scheme can operate under a condition of Zero Voltage Soft Switching (ZVS) in the main three phase rectifier circuit and zero current soft switching (ZCS) in auxiliary snubber circuits. The operating principle and steady-state performances of the proposed three-phase current source soft-switching PWM controlled PFC rectifier controlled by the DSP control implementation are evaluated and discussed on the basis of the experimental results of this active rectifier setup.

Current-Controlled Driving Method for AC PDP and Experimental Characterization

  • Kim, Joon-Yub;Lim, Jong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.253-257
    • /
    • 2002
  • A new Current-Controlled Driving Method that can drive AC PDPs with low voltage and high luminous efficiency for the sustaining period is presented. In this driving method, the voltage source is connected to a storage capacitor and the stored voltage is delivered to the panel through LC resonance. Thus, this driving method can drive the panel with a voltage source as low as about half of the voltage necessary in the conventional driving methods. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146V and that high luminous efficiency of 1.33 1m/W can be achieved.

A New Sustain Driving Method for AC PDP : Charge-Controlled Driving Method

  • Kim, Joon-Yub
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.292-296
    • /
    • 2002
  • A new sustain driving method for the AC PDP is presented. In this driving method, the voltage source is connected to a storage capacitor, this storage capacitor charges an intermediate capacitor through LC resonance, and the panel is charged from the intermediate capacitor indirectly. In this way, the current flowing into the AC PDP when the sustain discharge occurs is reduced because the current is indirectly supplied from a capacitor, a limited source of charge. Thus, the input power to the output luminance efficiency is improved. Since the voltage supplied to the storage capacitor is doubled through LC resonance, this method call drive an AC PDP with a voltage source of about half of the voltage necessary in the conventional driving methods. The experiments showed that this charge-controlled driving method could drive ail AC PDP with a voltage source of as low as 107V. Using a panel of the conventional structure, luminous efficiency of 1.28 lm/W was achieved.

The Study on Source Current Control of the Voltage Source PWM Converter (전압형 PWM컨버터의 전원전류제어에 관한 연구)

  • Park, J.H.;Lee, C.D.;Gho, S.H.;Cho, Y.G.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2037-2039
    • /
    • 1997
  • In this paper, a source current controlled-scope of the Voltage source PWM converter is considered from one-phase equivalent circuit. And for the improvement of transient characteristics the state quantity of bridge current that is returned from it's error is controlled. With the result of that the bridge current is controlled, this state quantity is known that it is a equivalent braking resistor.

  • PDF

Stability Analysis of Induction Motor Driven by Stator Voltage Controlled CSI (고정자전압제어 전류형 인버터에 의한 유도전동기 구동시스템의 안정도 해석)

  • Song, Joong-Ho;Yoon, Tae-Woong;Youn, Myung-Joong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.32-41
    • /
    • 1992
  • This paper presents a comprehensive study on the stability of several control schemes for the induction motor driven by current source inverters. A stator voltage controlled current source inverter drive system without a speed sensor is investigated in order to find appropriate control schemes, which are primarily based on direct or, alternatively, indirect frequency control scheme. It can be seen, especially that an introduction of the indirect frequency control method improves the inherent instability of the current source inverter drive system for the induction motor. The overall control systems with either voltage control loop or current and voltage control loops in addition to each frequency control scheme, are analyzed by utilizing the root locus method and simulated by computer to show the validity of this analysis.

Discharge Characteristics of a KSTAR NBI Ion Source

  • Chang Doo-Hee;Oh Byung-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.226-233
    • /
    • 2003
  • The discharge characteristics of a prototype ion source was investigated, which was developed and upgraded for the NBI (Neutral Beam Injection) heating system of KSTAR (Korea Superconducting Tokamak Advanced Research). The ion source was designed for the arc discharge of magnetic bucket chamber with multi-pole cusp fields. The ion source was discharged by the emission-limited mode with the control of filament heating voltage. The maximum ion density was 4 times larger than the previous discharge controlled by a space-charge-limited mode with fully heated filament. The plasma (ion) density and arc current were proportional to the filament voltage, but the discharge efficiency was inversely proportional to the operating pressure of hydrogen gas. The maximum ion density and arc current were obtained with constant arc voltage ($80{\sim}100V$), as $8{\times}10^{11}cm^{-3}$ and 1200 A, respectively. The estimated maximum beam current was about 35 A, extracted by the accelerating voltage of 80kV.

High-linearity voltage-controlled current source circuits with wide range current output (넓은 범위의 전류 출력을 갖는 고선형 전압-제어 전류원 회로)

  • Cha, Hyeong-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.395-398
    • /
    • 2004
  • High-linearity voltage-controlled current sources (VCCSs) circuits for wide voltage-controlled oscillator and automatic gun control were proposed. The VCCS consists of emitter follower for voltage input, two common-base amplifier which their emitter connected for current output, and current mirror which connected the two amplifier for large output current. The VCCS used only five transistors and a resistor without an extra bias circuit. Simulation results show that the VCCS has current output range from 0mA to 300mA over the control voltage range from 1V to 4.8V at supply voltage 5V. The linearity error of output current has less than $1.4\%$ over the current range from 0A to 300mA.

  • PDF