• Title/Summary/Keyword: voltage violation

Search Result 21, Processing Time 0.018 seconds

A Development of Guidance System for Power Systems (전력 계통 이상상태 가이던스 시스템 개발)

  • 오승렬;백영식;김정년;한무호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.219-225
    • /
    • 2003
  • Recently, electric power demands tend to be increased continuously. In this situation, current states of power systems must be definitely recognized to operate power systems stably and economically. Also, corrective actions must be performed for the violation of bus voltage and line overload. It is desirable that the situations of violation are promptly removed to operate power systems effectively. This paper deals with the development of guidance system for voltage and overload correction on base case using Generator-Voltage Sensitivity List(GVSL) and Generator Shifter Factor List(GSFL). Also, to show the superiority and economical efficiency of the proposed application, we applied the proposed guidance system to the Kwangyang Steel Works' Power Systems.

A Development of On-Line Guidance System for Power System (전력 계통 이상 상태 Guidance System 개발)

  • Oh, Seung-Ryle;Baek, Young-Sik;Kim, Jung-Nyun;Han, Moo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.47-49
    • /
    • 2002
  • Recently, the power system has a trend of a sustaining growth in electric power demand with large-sized formation. In this situation, current states can be definitely comprehended to operate security and economic power system. Also, corrective actions must be performed for the violation of bus voltage and line overload. In the security and economy with on-line, It is desirable that the situations of violation are promptly removed to operate power system effectively. This paper deals with the development of application, Kangyang Steel Works' Power System Guidance System, for voltage and overload correction on base case using Generator-Voltage Sensitivity List(GVSL) and Generator Shifter Factor List(GSFL). Also, to show the superiority and economical efficiency of the proposed application, we simulate the Kangyang Steel Works' Power System.

  • PDF

Guidance system for abnormal situations of Power system (계통 이상상태 가이던스 시스템)

  • Seo, Gyu-Seok;Ok, Chi-Yun;Baek, Young-Sik;Kim, Jung-Nyun;Han, Moo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.256-258
    • /
    • 2003
  • Recently, electric power demands tend to be increased continuously. In this situation, current states of power systems must be definitely recognized to operate power systems stably and economically. Also, corrective actions must be performed for the violation of bus voltage and line overload. It is desirable that the situations of violation are promptly removed to operate power systems effectively. This paper deals with the development of guidance system for voltage and overload correction on base case using Generator-Voltage Sensitivity List(GVSL) and Generator Shifter Factor List(GSFL). Also, to show the superiority and economical efficiency of the proposed application, we applied the proposed guidance system to the Kwangyang Steel Works' Power Systems.

  • PDF

A Knowledge Based System for Reactive Power/Voltage Control Including Contingency (상정사고를 고려한 무효전력/전압제어 전문가 시스템)

  • 박영문;김두현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.779-791
    • /
    • 1990
  • This paper presents a knowledge based system to solve reactive power/voltage control problem in a power system. A need is recognized for new methods to alleviate a bus voltage limit violation more quickly when a power system becomes an emergency state due to contingency. To cope with this object, a set of indices concept which is used to make bus order list of reactive power injection priority is introduced. A set of indices, based on the overall system conditions, consists of steady state stability index, reactive power transmittance indes, voltage severity index and generator fuel cost index. This scheme and empirical rules of the knowledge on the basis of the human expert result in fast decision-making of the reactive power compensation devices since only the amount of devices is determined by the inference in the knowledge based system when the voltage violation is detected. In this approach, control devices such as shunt capacitor (reactor), transformer tap settings and generator voltages are utilized. Also the developed system herein can be used to minimize control action taken or generator fuel cost according to the user's option on the weighting factor. The results of a case study are also presented.

  • PDF

The Maximum Installable DG Capacity According to Operation Methods of Voltage Regulator in Distribution Systems (배전계통의 전압조정기 운영방법에 따른 분산형전원 최대 도입 용량 산출)

  • Kim, Mi-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1263-1269
    • /
    • 2009
  • Stable and sustainable power supply means maintaining a certain level of power quality and service while securing energy resource and resolving environmental issues. Distributed generation (DG) has become an essential and indispensable element from environmental and energy security perspectives. It is known that voltage violation is the most important constraint for load variation and the maximum allowable DG. In distribution system, sending voltage from distribution substation is regulated by ULTC (Under Load Tap Changer) designed to maintain a predetermined voltage level. ULTC is controlled by LDC (Line Drop Compensation) method compensating line voltage drop for a varying load, and the sending voltage of ULTC calls for LDC parameters. The consequence is that the feasible LDC parameters considering variation of load and DG output are necessary. In this paper, we design each LDC parameters determining the sending voltage that can satisfy voltage level, decrease ULTC tap movement numbers, or increase DG introduction. Moreover, the maximum installable DG capacity based on each LDC parameters is estimated.

Voltage Control of ULTC and Distributed Generations in Distribution System (분산전원이 연계된 배전계통에서 ULTC와 분산전원의 전압제어)

  • Jeon, Jae-Geun;Won, Dong-Jun;Kim, Tae-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2206-2214
    • /
    • 2011
  • LDC(Line Drop Compensation) is widely used in controlling ULTC(Under Load Tap Changer) output voltage at distribution substation. However, LDC may experience some difficulties in voltage control due to renewable energy resources and distributed generations. Therefore, more advanced voltage control algorithm is necessary to deal with these problems. In this paper, a modified voltage control algorithm for ULTC and DG is suggested. ULTC is operated with the voltages measured at various points in distribution system and prevents overvoltage and undervoltage in the distribution feeders. Reactive power controller in DG compensates the voltage drop in each distribution feeders. By these algorithms, the voltage unbalance between feeders and voltage limit violation will be reduced and the voltage profile in each feeder will become more flat.

Optimal Shunt Compensation for Improving Voltage Stability and Transfer Capability in Metropolitan Area of the Korean Power System

  • Choi, YunHyuk;Lee, Byongjun;Kim, TaeKyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1502-1507
    • /
    • 2015
  • This paper deals with shunt compensation to eliminate voltage violation and enhance transfer capability, which is motivated towards implementation in the Korean power system. The optimal shunt compensation algorithm has demonstrated its effectiveness in terms of voltage accuracy and reducing the number of actions of reactive power compensating devices. The main shunt compensation devices are capacitor and reactor. Effects of control devices are evaluated by cost computations. The control objective at present is to keep the voltage profile of a key bus within constraints with minimum switching cost. A robust control strategy is proposed to make the control feasible and optimal for a set of power-flow cases that may occurs important event from system. Case studies with metropolitan area of the Korean power system are presented to illustrate the method.

An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints

  • Song Hwa-Chang;Lee Byong-Jun;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.152-158
    • /
    • 2005
  • This paper describes a reactive optimal power flow incorporating margin enhancement constraints. Margin sensitivity at a steady-state voltage instability point is calculated using invariant space parametric sensitivity, and it can provide valuable information for selection of effective control parameters. However, the weakest buses in neighboring regions have high margin sensitivities within a certain range. Hence, the control determination using only the sensitivity information might cause violation of operational limits of the base operating point, at which the control is applied to enhance voltage stability margin in the direction of parameter increase. This paper applies an interior point method (IPM) to solve the optimal power flow formulation with the margin enhancement constraints, and shunt capacitances are mainly considered as control variables. In addition, nonlinearity of margin enhancement with respect to control of shunt capacitance is considered for speed-up control determination in the numerical example using the IEEE 118-bus test system.

Contingency Severity Ranking Using Direct Method in Power Systems (전력계통에 있어서 직접법을 활용한 상정사고 위험순위 결정)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.67-72
    • /
    • 2005
  • This paper presents a method to select contingency ranking considering voltage security problems in power systems. Direct method which needs not the detailed knowledge of the post contingency voltage at each bus is used. Based on system operator's experience and knowledge, the membership functions for the MVAR mismatch and allowable voltage violation are justified describing linguistic representation with heuristic rules. Rule base is used for the computation of severity index for each contingency by fuzzy inference. Contingency ranking harmful to the system is formed by the index for security evaluation. Compared with 1P-1Q iteration, this algorithm using direct method and fuzzy inference shows higher computation speed and almost the same accuracy. The proposed method is applied to model system and KEPCO pratical system which consists of 311 buses and 609 lines to show its effectiveness.

A Study on the Impact of the Impedance Change of 345[kV] Power Transformers on Overall System Performance (345[kV] 전력용 변압기 %임피던스 변화에 따른 계통영향 분석)

  • Shin, Jeong-Hoon;Nam, Su-Chul;Lee, Jae-Gul;Baek, Seung-Mook;Song, Ji-Young;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.140-149
    • /
    • 2011
  • This paper deals with the impact analysis of the impedance change of 345/154[kV] power transformers on the KEPCO system's overall performance. Through the steady-state and dynamic analysis of power system, the maximum available impedance of power transformers were determined. Checking violation of short-circuit current ratings and transformer overload, parallel operation of power transformers, calculation of voltage variation ratio according to the impedance changes of power transformers are included in the steady-state analysis. In addition, transient and voltage stability analysis are also performed in the study. Available magnitudes to be able to change the impedance of the transformers in KEPCO system are finally determined in the paper.