• Title/Summary/Keyword: voltage step-up

Search Result 341, Processing Time 0.024 seconds

Polarity Inversion DC-DC Power Conversion Circuit with High Voltage Step-up Ratio

  • Roh, Chung-Wook;Yoo, Cheol-Hee;Jung, Dong-Yeol;Sak, Sug-Chin
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.669-676
    • /
    • 2011
  • A novel polarity inversion dc-dc power conversion circuit that features the high input to output step-up voltage conversion ratio characteristics is presented for high voltage DC power supply applications. The proposed circuit features the reduced voltage stresses of the components compared to those of the conventional ones. The operational principles of the proposed circuit are analyzed and comparative features are presented. The simulation results and experimental results are presented to verify the validity of the proposed circuit.

Two-Switch Non-Isolated Step-Up DC-DC Converter

  • Nguyen, Minh-Khai;Choi, Youn-Ok;Cho, Geum-Bae;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.651-661
    • /
    • 2018
  • This paper suggests a new non-isolated high voltage gain DC-DC converter with two switches. The proposed two-switch converter has the following characteristics: a high voltage gain, a continuous input current with a small ripple, a reduction in the size of the inductor, and a simple circuit with only a few elements. A theoretical analysis, guidelines for parameter selection, and a comparison with conventional non-isolated high step-up converters are presented. A prototype of 250 W is set up to demonstrate the correctness of the proposed converter. Results obtained from simulations and experiments are presented.

Novel Non-Isolated DC-DC Converter Topology with High Step-Up Voltage Gain and Low Voltage Stress Characteristics Using Single Switch and Voltage Multipliers (단일 스위치와 전압 체배 회로를 이용하는 고변압비와 낮은 전압 스트레스를 가진 새로운 비절연형 DC-DC 컨버터 토폴로지)

  • Tran, Manh Tuan;Amin, Saghir;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.83-85
    • /
    • 2019
  • The use of high voltage gain converters is essential for the distributed power generation systems with renewable energy sources such as the fuel cells and solar cells due to their low voltage characteristics. In this paper, a high voltage gain topology combining cascode Inverting Buck-Boost converter and voltage multiplier structure is introduced. In proposed converter, the input voltage is connected in series at the output, the portion of input power is directly delivered to the load which results in continuous input current. In addition, the voltage multiplier stage stacked in proper manner is not only enhance high step-up voltage gain ratio but also significantly reduce the voltage stress across all semiconductor devices and capacitors. As a result, the high current-low voltage switches can be employed for higher efficiency and lower cost. In order to show the feasibility of the proposed topology, the operation principle is presented and the steady-state characteristic is analyzed in detail. A 380W-40/380V prototype converter was built to validate the effectiveness of proposed converter.

  • PDF

A study on the single phase AC/AC converter (단상 AC/AC 컨버터에 관한 연구)

  • Bae, Sang-June;Chung, Ta-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1931-1933
    • /
    • 1998
  • In this paper, single-phase PWM AC to AC converter that operates with unit power factor and sinusoidal input line currents is presented. The output voltage of this converter is able to be obtain step up voltage as well as step down voltage. because the converter applies to operating method of buck-boost converter. The control of this converter is performed with PI control method. By using this control method low lipples in the output current and the voltage as well as fast dynamic response are achieved.

  • PDF

Novel High Step-Up DC/DC Converter Structure Using a Coupled Inductor with Minimal Voltage Stress on the Main Switch

  • Moradzadeh, Majid;Hamkari, Sajjad;Zamiri, Elyas;Barzegarkhoo, Reza
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2005-2015
    • /
    • 2016
  • A high-step-up DC/DC converter for renewable energy systems is proposed. The proposed structure provides high voltage gain by using a coupled inductor without the need for high duty cycles and high turn ratios. The voltage gain is increased through capacitor-charging techniques. In the proposed converter, the energy of the leakage inductors of the coupled inductor is reused. This feature reduces the stress on the switch. Therefore, a switch with low ON-state resistance can be used in the proposed converter to reduce losses and increase efficiency. The main switch is placed in series with the source. Therefore, the converter can control the energy flow from the source to the load. The operating principle is discussed in detail, and a steady state analysis of the proposed converter is conducted. The performance of the proposed converter is verified by experimental results.

A Novel Switched Capacitor High Step-up dc/dc Converter Using a Coupled Inductor with its Generalized Structure

  • Hamkari, Sajjad;Moradzadeh, Majid;Zamiri, Elyas;Nasir, Mehdi;Hosseini, Seyed Hossein
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.579-589
    • /
    • 2017
  • In this study a new high step-up dc-dc converter is presented. The operation of the proposed converter is based on the capacitor switching and coupled inductor with a single active power switch in its structure. A passive voltage clamp circuit with two capacitors and two diodes is used in the proposed converter for elevating the converter's voltage gain with the recovered energy of the leakage inductor, and for lowering the voltage stress on the power switch. A switch with a low $R_{DS}$ (on) can be adopted to reduce conduction losses. In the generalized mode of the proposed converter, to reach a desired voltage gain, capacitor stages with parallel charge and series discharge techniques are extended from both sides of secondary side of the coupled inductor. The proposed converter has the ability to alleviate the reverse recovery problem of diodes with circuit parameters. The operating principle and steady-states analyses are discussed in detail. A 40W prototype of the proposed converter is implemented in the laboratory to verify its operation.

Analysis and Implementation of High Step-Up DC/DC Convertor with Modified Super-Lift Technique

  • Fani, Rezvan;Farshidi, Ebrahim;Adib, Ehsan;Kosarian, Abdolnabi
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.645-654
    • /
    • 2019
  • In this paper, a new high step up DC/DC converter with a modified super-lift technique is presented. The coupled inductor technique is combined with the super-lift technique to provide a tenfold or more voltage gain with a proper duty cycle and a low turn ratio. Due to a high conversion ratio, the voltage stress on the semiconductor devices is reduced. As a result, low voltage ultra-fast recovery diodes and low on resistance MOSFET can be used, which improves the reverse recovery problems and conduction losses. This converter employs a passive clamp circuit to recycle the energy stored in the leakage inductance. The proposed convertor features a high conversion ratio with a low turn ratio, low voltage stress, low reverse recovery losses, omission of the inrush currents of the switch capacitor loops, high efficiency, small volume and reduced cost. This converter is suitable for renewable energy applications. The operational principle and a steady-state analysis of the proposed converter are presented in details. A 200W, 30V input, 380V output laboratory prototype circuit is implemented to confirm the theoretical analysis.

A Novel Non-Isolated DC-DC Converter using Single Switch and Voltage Multipliers with High Step-Up Voltage Gain and Low Voltage Stress Characteristics (고전압비와 낮은 전압 스트레스를 가진 단일 스위치와 전압 체배 회로를 이용한 새로운 비절연형 DC-DC 컨버터)

  • Tuan, Tran Manh;Amin, Saghir;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.157-161
    • /
    • 2020
  • High voltage gain converters are essential for distributed power generation systems with renewable energy sources, such as fuel cells and solar cells, because of their low voltage characteristics. This paper introduces a novel nonisolated DC-DC converter topology developed by combining an inverting buck-boost converter and voltage multipliers. In the proposed converter, the input voltage is connected in series with the output, and the majority of the input power is directly delivered to the load. The voltage multipliers are stacked in series to achieve high step-up voltage gain. The voltage stress across all of the switches and capacitors can be significantly reduced. As a result, the switches with low voltage ratings can be used to achieve high efficiency and low cost. To verify the validity of the proposed topology, a 360-W prototype converter is built to obtain the experimental results.

Design and Implementation of a Reverse Matrix Converter for Permanent Magnet Synchronous Motor Drives

  • Lee, Eunsil;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2297-2306
    • /
    • 2015
  • This paper presents the development of a system with a reverse matrix converter (RMC) for permanent magnet synchronous motor (PMSM) drive and its effective control method. The voltage transfer ratio of the general matrix converter is restricted to a maximum value of 0.866, which is not suitable for applications whose source voltages are lower than the load voltages. The proposed RMC topology can step up the voltage without any additional components in the conventional circuit. Its control method is different from traditional matrix converter’s one, thus this paper proposes control schemes of RMC by means of controlling both the generator and motor side currents with properly designed control loop. The converter can have sinusoidal input/output current waveforms in steady state condition as well as a boosted voltage. In this paper, a hardware system with an RMC for a PMSM drive system is described. The performance of the system was investigated through experiments

Innovative step-up direct current converter for fuel cell-based power source to decrease current ripple and increase voltage gain

  • Salary, Ebrahim;Falehi, Ali Darvish
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.695-707
    • /
    • 2022
  • As for the insufficient nature of the fossil fuel resources, the renewable energies as alternative fuels are imperative and highly heeded. To deliver the required electric power to the industrial and domestic consumers from DC renewable energy sources like fuel cell (FC), the power converter operates as an adjustable interface device. This paper suggests a new boost structure to provide the required voltage with wide range gain for FC power source. The proposed structure based on the boost converter and the quazi network, the so-called SBQN, can effectively enhance the FC functionality against its high operational sensitivity to experience low current ripple and also propagate voltage and current with low stress across its semiconductors. Furthermore, the switching power losses have been decreased to make this structure more durable. A full operational analysis of the proposed SBQN and its advantages over the conventional and famous structures has been compared and explained. Furthermore, a prototype of the single-phase converter has been constructed and tested in the laboratory.