• Title/Summary/Keyword: voltage standing wave

Search Result 115, Processing Time 0.035 seconds

RF protection technique of antenna tuning switch in all-off condition (전차단 상태에서 동작하는 안테나 튜닝스위치의 RF 보호기술)

  • Jhon, Heesauk;Lee, Sanghun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1567-1570
    • /
    • 2022
  • This paper, we presents a RF protection technique of antenna switch by improving the power handling capability in worst case environment mode for mobile phone applications without critical payment of circuit performances such as insertion loss, isolation and ACBV (AC breakdown voltage). By applying a additional capacitive path located in front of the antenna in cell-phone, it performs the effective reduction of input power in high voltage standing wave ratio (VSWR) condition. Under the all-path off condition which causes a high VSWR, it achieved 37.7dBm power handling level as high as 5.7dB compared to that of conventional one at 2GHz. In addition, insertion loss and isolation performances were 0.31dB and 42.72dB at 2 GHz, respectively which were almost similar to that of the conventional circuit. The proposed antenna switch was fabricated in 130nm CMOS SOI technology.

Genetic Algorithm Optimization of LNA for Wireless Applications in 2.4GHz Band

  • Kim Ji-Yoon;Yang Doo-Yeong
    • International Journal of Contents
    • /
    • v.2 no.1
    • /
    • pp.29-33
    • /
    • 2006
  • The common-source low noise amplifier(LNA) with inductive degeneration using a genetic algorithm is designed and tested for a down converter in an industrial, scientific and medical (ISM) band application and a wireless broadband internet service (WiBro). The genetic algorithm optimizes the reflection coefficients to be well matched the input and output ports between multistage transistor amplifiers, and it generates low voltage standing wave ratio as well as gain flatness of the amplifier. The stability and the gain flatness of the LNA have been improved by combining the matching circuits and the series feedback microstrip lines with inductive degeneration at common-source port. In the frequency range of ISM band and WiBro application operating at $2.3GHz{\sim}2.5GHz$, the measured power gain and maximum voltage standing wave ratio (VSWR) of the LNA are $41{\pm}0.5dB$ and 1.3, and the noise figure of the LNA is lower than 0.85dB. The above results are agreed well with the theoretical values of the amplifiers.

  • PDF

A SiGe HBT Variable Gain Driver Amplifier for 5-GHz Applications

  • Chae Kyu-Sung;Kim Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.356-359
    • /
    • 2006
  • A monolithic SiGe HBT variable gain driver amplifier(VGDA) with high dB-linear gain control and high linearity has been developed as a driver amplifier with ground-shielded microstrip lines for 5-GHz transmitters. The VGDA consists of three blocks such as the cascode gain-control stage, fixed-gain output stage, and voltage control block. The circuit elements were optimized by using the Agilent Technologies' ADSs. The VGDA was implemented in STMicroelectronics' 0.35${\mu}m$ Si-BiCMOS process. The VGDA exhibits a dynamic gain control range of 34 dB with the control voltage range from 0 to 2.3 V in 5.15-5.35 GHz band. At 5.15 GHz, maximum gain and attenuation are 10.5 dB and -23.6 dB, respectively. The amplifier also produces a 1-dB gain-compression output power of -3 dBm and output third-order intercept point of 7.5 dBm. Input/output voltage standing wave ratios of the VGDA keep low and constant despite change in the gain-control voltage.

The Design of Switching-Mode Power Amplifier and Ruggedness Characteristics Analysis of Power Amplifier Using GaN HEMT (GaN HEMT를 이용한 스위칭 모드 전력증폭기 설계 및 전력증폭기의 Ruggedness 특성 분석)

  • Choi, Gil-Wong;Lee, Bok-Hyoung;Kim, Hyoung-Joo;Kim, Sang-Hoon;Choi, Jin-Joo;Kim, Dong-Hwan;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.394-402
    • /
    • 2013
  • This paper presents design, fabrication and ruggedness test of switching-mode power amplifier using GaN(Gallium Nitride) HEMT(High Electron Mobility Transistor) for S-band radar applications. The power amplifier is designed to Class-F for high efficiency. The input signal for the measurement of the power amplifier is pulse signal at $100{\mu}s$ pulse width and duty cycle of 10 %. The measurement results of the fabricated Class-F power amplifier are a power gain of 10.8 dB, an output power of 40.8 dBm, a power added efficiency(PAE) of 54.2 %, and a drain efficiency of 62.6 %, at the center frequency. We proposed reliability test set-up of a power amplifier for ruggedness test. And we measured output power and efficiency according to VSWR(Voltage Standing Wave Ratio) variation. The designed power amplifier achieved output power of 32.6~41.1 dBm and drain efficiency of 23.4~63 % by changing VSWR, respectively.

Analysis on Signal Flow Graph of Slotted LIne (Slotted Line의 Signal Flow Graph 해석)

  • 박기수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.6 no.3
    • /
    • pp.8-11
    • /
    • 1969
  • In the precision measurement of the voltage standing wave ratio (VSWR) or reflection coefficient by means of the slotted line technique, one of the important factors is the maximum error due to the discontinuities and multi-reflection in the slotted line. Particularly, this error becomes a critical factor when the VSWR or the reflection coefficient to be measured is very small. In this paper, the exact expression of this error is obtained by means of the Signal flow graph method.

  • PDF

A Single Layer Multi Band Microstrip Patch Antenna for GPS L1/L2, GLONASS Receiver Applications (GPS L1/L2, GLONASS 수신기용 다중 대역 단일 패치 안테나)

  • Kim, Ji-Hae;Kim, Mi-Suk;Kim, Jong-Seong;Son, Seok-Bo;Kim, Young-Baek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.990-998
    • /
    • 2011
  • In this paper, we have designed a multi-band single layer microstrip patch antenna with slots for GPS L2/L1, GLONASS receivers. The antenna has dual feed structure and consists of single layer microstrip patch with slots and impedance matching circuit. The antenna specifications are a VSWR(Voltage Standing Wave Ratio) of less than 2.0, RHCP(Right-Hand Circular Polarization) characteristics over the operating frequency bands of GPS L2(1,227.6 MHz)/L1(1,575.42 MHz) and GLONASS(1,602 MHz), the maximum active antenna gain of more than 30 dB and the axial ratio of less than 3 dB. The antenna has been successfully evaluated by various tests.

Design and Implementation of UWB Antenna with Dual Band Rejection Characteristics (이중 대역저지 특성을 가지는 UWB 안테나 설계 및 구현)

  • Yang, Woon Geun;Nam, Tae Hyeon
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.413-419
    • /
    • 2018
  • An UWB(Ultra Wide Band) antenna with band rejection characteristics is designed and implemented. A planar radiation patch with slot, parasitic elements on both sides of strip and ground plane on back side consist the proposed antenna. The slot in the radiation patch and parasitic elements contribute corresponding bands rejection characteristics. The slot contributes for WiMAX(World interoperability for Microwave Access, 3.30~3.70 GHz) band rejection and parasitic elements contribute for X-Band(7.25~8.395 GHz) rejection. Ansoft's HFSS(High Frequency Structure Simulator) was used to design the proposed antenna and performance simulations. Simulation result showed VSWR(Voltage Standing Wave Ratio) less than 2.0 for UWB band except for dual rejection bands of 3.30~3.86 GHz and 7.21~8.39 GHz. And VSWR measurement result for the implemented antenna shows less than 2.0 for 3.10~10.60 GHz band except dual rejection bands of 3.25~3.71 GHz and 7.25~8.46 GHz.

UHF Sensor Development for Partial Discharge Exclusively for Measurement in 25.8kV GIS (25.8kV GIS 부분방전 측정전용 UHF센서 개발)

  • Choi, Mun-Gyu;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1083-1088
    • /
    • 2016
  • 25.8kV GIS part generated by sensors to measure contact an inflow of noise depending on the extent of the measured discharge occurs often not easy. Partial discharge signal measurement sensor suitable for developing a more useful measurements at the scene to this, partial discharge waveform analysis developed a sensor, and to utilize forSensor on the development of the most important is VSWR decided to (voltage standing wave ratio) voltage standing-wave ratio less than 1.5 and decided less than at the full spectrum bands that are measured, this time Return loss, as measured value by absolute criteria 14.0 dB produced the sensor, designed to or more. UHF 1.5~0.5 GHz bandwidth spectrum to be measured in GIS. UHF bands were designed to be able to measure the best signal. Recently, 25.8kV GIS production company has been increasing variety of GIS were made open spacer in partial discharge in accordance with the not very easy to detect the signal. The sensor is designed height of four cm external spacer is attachment GIS in an influx of outside noise measurement, and be so manufactured as to facilitate the least we've done. Also, since partial discharge which occur can measure the frequency of the 170kV GIS external partial-discharge signals that occur at the scene of insulation applied to the spacer. Features, and also derived good results using global positioning. Also measured discharge point about sensors that are stable and the reliability of the development and local substation equipment failure occurring signal analysis through the discharge for the prevention of widely. There should be to believe that used.

On-Chip Design-for-Testability Circuit for RF System-On-Chip Applications (고주파 시스템 온 칩 응용을 위한 온 칩 검사 대응 설계 회로)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.632-638
    • /
    • 2011
  • This paper presents on-chip Design-for-Testability (DFT) circuit for radio frequency System-on-Chip (SoC) applications. The proposed circuit measures functional specifications of RF integrated circuits such as input impedance, gain, noise figure, input voltage standing wave ratio (VSWRin) and output signal-to-noise ratio (SNRout) without any expensive external equipment. The RF DFT scheme is based on developed theoretical expressions that produce the actual RF device specifications by output DC voltages from the DFT chip. The proposed DFT showed deviation of less than 2% as compared to expensive external equipment measurement. It is expected that this circuit can save marginally failing chips in the production testing as well as in the RF system; hence, saving tremendous amount of revenue for unnecessary device replacements.

Design of a Broadband Series-Fed Bow-tie Dipole Pair Antenna for Mobile Base Station (이동통신 기지국용 광대역 직렬 급전 보우타이 다이폴 쌍 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1445-1450
    • /
    • 2013
  • In this paper, a broadband series-fed bow-tie dipole pair (SBDP) antenna operating in the band of 1.7-2.7 GHz for mobile communication base station applications is proposed. The proposed antenna uses bow-tie-shaped dipole elements instead of straight strip dipole ones used in a conventional series-fed dipole pair (SDP) antenna. The simulation results show that the lowest operating frequency is shifted toward lower frequency as the flare angle increases, and so the lengths of the bow-tie dipole elements can be reduced in proportion to the frequency shift toward lower frequency. An SBDP antenna with a flare angle of 10 degrees is fabricated on an FR4 substrate (dielectric constant = 4.4 and thickness = 1.6 mm) and total width of the fabricated antenna is reduced by 10% compared to that of the conventional SDP antenna. The measured impedance bandwidth for voltage standing wave ratio (VSWR) < 2 is 48.8% (1.69-2.78 GHz), gain is 5.8-6.3 dBi, and the front-to-back ratio (FBR) is 14-17 dB.