• Title/Summary/Keyword: voltage sensitivity

Search Result 651, Processing Time 0.032 seconds

Voltage collapse proximity index based on system apparent power loss sensitivity and its application to VAR investment (피상전력 손실감도에 의한 전압붕괴 근접도 지표와 무효전력 투자)

  • 이상중;김건중;김원겸;김용배;엄재선
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.10
    • /
    • pp.1290-1294
    • /
    • 1995
  • In this paper, a new voltage collapse proximity index (VCPI) based on system apparent power loss sensitivity is proposed. The newly proposed index .lambda.$^{Sloss}$ reaches -.inf. at system voltage collapse point and can be represented by .root..lambda.$^{Ploss}$$^{2}$+.lambda.$^{Qloss}$$^{2}$ where .lambda.$^{Ploss}$ and .lambda.$^{Qloss}$ are the VCPI based on the system active and reactive power loss sensitivity respectively. These indices can be used for the system VAR investment. .DELTA.Q [VAR] is invested, step by step, by the priority of the VCPI index given for each bus. The indices use information from normal power flow equations and their Jacobians. Computation time for deriving .lambda.$^{Sloss}$ is almost same as that for power flow calculation. Two case studies prove the effectiveness of the .lambda.$^{Sloss}$ index and the VAR investment algorithm proposed.

  • PDF

Improvement of Sensing Performance on Nasicon Amperometric NO2 Sensors (나시콘 전류검출형 NO2 센서의 성능개선)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.912-917
    • /
    • 2007
  • Many electrochemical power devices such as solid state batteries and solid oxide fuel cell have been studied and developed for solving energy and environmental problems. An amperometric gas sensor usually generates sensing signal of electric current along the proportion of the concentration of target gas under the condition of limiting current. For narrow variations of gas concentration, the amperometric gas sensor can show higher precision than a potentiometric gas sensor does. In additional, cross sensitivities to interfering gases can possibly be mitigated by choosing applied voltage and electrode materials properly. In order to improve the sensitivity to $NO_2$, the device was attached with Au reference electrode to form the amperometric gas sensor device with three electrodes. With the fixed bias voltage being applied between the sensing and counter electrodes, the current between the sensing and reference electrodes was measured as a sensing signal. The response to $NO_2$ gas was obviously enhanced and suppressed with a positive bias, respectively, while the reverse current occurred with a negative bias. The way to enhance the sensitivity of $NO_2$ gas sensor was thus realized. It was shown that the response to $NO_2$ gas could be enhanced sensitivity by changing the bias voltage.

NOx Gas Detection Characteristics of MWCNT Gas Sensor by Electrode Spacing Variation (MWCNT 가스센서의 전극 간극 변화에 따른 NOx 가스 검출 특성)

  • Kim, Hyun-Soo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.668-672
    • /
    • 2014
  • Carbon nanotubes(CNT) has chemical stability and great sensitivity characteristics. In particular, the gas sensor required characteristics such as rapid, selectivity and sensitivity sensor. Therefore, CNT are ideal materials to gas sensor. So, we fabricated the NOx gas sensors of MOS-FET type using the MWCNT (multi-walled carbon nanotube). The fabricated sensor was used to detect the NOx gas for the variation of $V_{gs}$(gate-source voltage) and electrode changed electrode spacing=30, 60, 90[${\mu}m$]. The gas sensor absorbed with the NOx gas molecules showed the decrease of resistance, and the sensitivity of sensor was increased by magnification of electrode spacing. Furthermore, when the voltage($V_{gs}$) was applied to the gas sensor, the decrease in resistance was increased. On the other hand, the sensor sensitivity for the injection of NOx gas was the highest value at the electrode spacing $90[{\mu}m]$. We also obtained the adsorption energy($U_a$) using the Arrhenius plots by the reduction of resistance due to the voltage variations. As a result, we obtained that the adsorption energy was increased with the increment of the applied voltages.

A Simple Analytical Model for MEMS Cantilever Beam Piezoelectric Accelerometer and High Sensitivity Design for SHM (structural health monitoring) Applications

  • Raaja, Bhaskaran Prathish;Daniel, Rathnam Joseph;Sumangala, Koilmani
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.78-88
    • /
    • 2017
  • Cantilever beam MEMS piezoelectric accelerometers are the simplest and most widely used accelerometer structure. This paper discusses the design of a piezoelectric accelerometer exclusively for SHM applications. While such accelerometers need to operate at a lower frequency range, they also need to possess high sensitivity and low noise floor. The availability of a simple model for deflection, charge, and voltage sensitivities will make the accelerometer design procedure less cumbersome. However, a review of the open literature suggests that such a model has not yet been proposed. In addition, previous works either depended on FEM analysis or only reported on the fabrication and characterization of piezoelectric accelerometers. Hence, this paper presents, for the first time, a simple analytical model developed for the deflection, induced voltage, and charge sensitivity of a cantilever beam piezoelectric accelerometer.The model is then verified using FEM analysis for a range of different cases. Further, the model was validated by comparing the induced voltages of an accelerometer estimated using this model with experimental voltages measured in the accelerometer after fabrication. Subsequently, the design of an accelerometer is demonstrated for SHM applications using the analytical model developed in this work. The designed accelerometer has 60 mV/g voltage sensitivity and 2.4 pC/g charge sensitivity, which are relatively high values compared to those of the piezoresistive and capacitive accelerometers for SHM applications reported earlier.

A Design of Voltage-Controlled CMOS OTA and Its Application to Tunable Filters (전압-제어 CMOS OTA와 이를 이용한 동조 여파기 설계)

  • 차형우;정원섭
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1260-1264
    • /
    • 1990
  • A voltage controlled CMOS operational transconductance amplifier (OTA), whose transconductance is directly proportional to the DC bias voltage, has been designed for many electronic circuit applications. It consists of a differential pair and three ourrent mirrors. The SPICE simulation shows that the conversion sensitivity of the OTA is 41.817 \ulcornerho/V and the linearity error is less than 0.402% over a bias voltage range from -2. OV to 1. OV. Electrically tunalble filters based on voltage controlled impedances, which are realized with OTA's, also have been designed. The SPICE simulation shows that a second-order bandpass filter, whose center frequency is 23KHz at -1. OV, has the conversion sensitivity 6.6KHz/V and the linearity error less than 0.822% over a voltage range from -2.OV tp 1.OV, Tne OTA has been laid out with the 3\ulcorner n-well CMOS design rule adopted in ISRC (inter-university semiconductor research center). The chip size was about $0.756x0.945mm^2$.

  • PDF

A Study on Efficient Calculation of Effective Reactive Power Reserves Using Sensitivity Analysis

  • Bae, Moonsung;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1689-1696
    • /
    • 2017
  • In recent academic and industrial circles of the Republic of Korea, the securement of available reactive power reserve against the line faults is at issue. Thus, simulations have been performed for the securing of effective reactive power reserve (effective Q) to prepare for the line faults and improve reactive power monitoring and control methods. That is, a research has been conducted for the fast-decoupled Newton-Raphson method. In this study, a method that distinguishes source and sink regions to carry out faster provision of information in the event of line fault has been proposed. This method can perform quantification with the formula that calculates voltage variations in the line flow. The line flow and voltage changes can be easily induced by the power flow calculation performed every second in the operation system. It is expected that the proposed method will be able to contribute to securement of power system stability by securing efficient reactive power. Also, the proposed method will be able to contribute to prepare against contingencies effectively. It is not easy to prepare quickly for the situation where voltage drops rapidly due to the exhaustion of reactive power source by observing voltage information only. This paper's simulation was performed on the large scale Korean power system in steady state.

Evaluation of Image Quality and Stability of Radiation Output according to Change in Tube Voltage and Sensitivity when Abdomen and Pelvis Examination of Digital Radiography (DR) (디지털 방사선 시스템(DR)의 복부와 골반부 검사 시 관전압과 감도 변화에 따른 영상 화질과 방사선 출력의 안정성 평가)

  • Hwang, Jun-Ho;Yang, Hyung-Jin;Choi, Ji-An;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.517-526
    • /
    • 2019
  • The purpose of this study is to find the optimal method for clinical application by analyzing image quality and radiation output according to parameter combination when using the Automatic Exposure Control (AEC). The experimental method combines 70, 81 kVp with sensitivity S200, S400, S800 and S1000 of the Automatic Exposure Control for Entrance Surface Dose (ESD), current volume, Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR), Time-to-Radiation Dose Curve in abdomen and pelvis. And then, image quality and radiation output stability were evaluated. As a results, Entrance Surface Dose, current volume, Signal to Noise Ratio, Contrast to Noise Ratio decreased as the tube voltage and sensitivity were set higher. In addition, the higher tube voltage and sensitivity, the Time-to-Radiation Dose Curve showed a poor output stability. In conclusion, the higher the combination of tube voltage and sensitivity in the use of Automatic Exposure Control, the more problems can be seen in image quality and stability of the radiation output. Therefore, a relatively low combination of tube voltage and sensitivity showed that the image quality and radiation output stability could be optimized by minimizing the error range that would occur when the detector recognized a combination of parameters.

Short-term Reactive Power Reserve Optimization Based on Trajectory Sensitivity

  • Sun, Quancai;Cheng, Haozhong;Zhang, Jian;Li, Baiqing;Song, Yue
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.541-548
    • /
    • 2017
  • An increasing concern is paid to short-term voltage stability with the growth of penetration of induction motor loads. Reactive power reserve(RPR) of power system is critical to improve voltage stability. A definition of short-term voltage stability-related RPR(SVRPR) is proposed. Generators vary their contributions to voltage stability with their location and system condition, etc. Voltage support coefficient based on the second-order trace sensitivity method is proposed to evaluate SVRPR's contribution to short-term voltage stability. The evaluation method can account for the generator's reactive support in transient process and the contingency severity. Then an optimization model to improve short-term voltage stability is built. To deal with multiple contingencies, contingency weight taking into account both its probability and severity is proposed. The optimization problem is solved by primal dual interior point method. Testing on IEEE_39 bus system, it is indicated that the method proposed is effective. Short-term voltage stability is improved significantly by the way of SVRPR optimization. Hence, the approach can be used to prevent the happening of voltage collapse during system's contingency.

An Economic Analysis of Potential Cost Savings from the Use of Low Voltage DC (LVDC) Distribution Network

  • Hur, Don;Baldick, Ross
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.812-819
    • /
    • 2014
  • The proposed technical work attempts to compare the two key technologies of power distribution, i.e. direct current (DC) and alternating current (AC) in a fiscal manner. The DC versus AC debate has been around since the earliest days of electric power. Here, at least four types of a low voltage DC (LVDC) distribution are examined as an alternative to the existing medium voltage AC (MVAC) distribution with an economic assessment technique for a project investment. Besides, the sensitivity analysis will be incorporated in the overall economic analysis model to cover uncertainties of the input data. A detailed feasibility study indicates that many of the common benefits claimed for an LVDC distribution will continue to grow more profoundly as it is foreseen to arise with the increased integration of renewable energy sources and the proliferation of energy storage associated with the enhanced utilization of uninterruptible power supply (UPS) systems.

Coordinated Voltage and Reactive Power Control Strategy with Distributed Generator for Improving the Operational Efficiency

  • Jeong, Ki-Seok;Lee, Hyun-Chul;Baek, Young-Sik;Park, Ji-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1261-1268
    • /
    • 2013
  • This study proposes a voltage and reactive coordinative control strategy with distributed generator (DG) in a distribution power system. The aim is to determine the optimum dispatch schedules for an on-load tap changer (OLTC), distributed generator settings and all shunt capacitor switching on the load and DG generation profile in a day. The proposed method minimizes the real power losses and improves the voltage profile using squared deviations of bus voltages. The results indicate that the proposed method reduces the real losses and voltage fluctuations and improve receiving power factor. This paper proposes coordinated voltage and reactive power control methods that adjust optimal control values of capacitor banks, OLTC, and the AVR of DGs by using a voltage sensitivity factor (VSF) and dynamic programming (DP) with branch-and-bound (B&B) method. To avoid the computational burden, we try to limit the possible states to 24 stages by using a flexible searching space at each stage. Finally, we will show the effectiveness of the proposed method by using operational cost of real power losses and voltage deviation factor as evaluation index for a whole day in a power system with distributed generators.