• Title/Summary/Keyword: volatility models

Search Result 193, Processing Time 0.019 seconds

Dynamic Interaction between Conditional Stock Market Volatility and Macroeconomic Uncertainty of Bangladesh

  • ALI, Mostafa;CHOWDHURY, Md. Ali Arshad
    • Asian Journal of Business Environment
    • /
    • v.11 no.4
    • /
    • pp.17-29
    • /
    • 2021
  • Purpose: The aim of this study is to explore the dynamic linkage between conditional stock market volatility and macroeconomic uncertainty of Bangladesh. Research design, data, and methodology: This study uses monthly data covering the time period from January 2005 to December 2018. A comprehensive set of macroeconomic variables, namely industrial production index (IP), consumer price index (CPI), broad money supply (M2), 91-day treasury bill rate (TB), treasury bond yield (GB), exchange rate (EX), inflow of foreign remittance (RT) and stock market index of DSEX are used for analysis. Symmetric and asymmetric univariate GARCH family of models and multivariate VAR model, along with block exogeneity and impulse response functions, are implemented on conditional volatility series to discover the possible interactions and causal relations between macroeconomic forces and stock return. Results: The analysis of the study exhibits time-varying volatility and volatility persistence in all the variables of interest. Moreover, the asymmetric effect is found significant in the stock return and most of the growth series of macroeconomic fundamentals. Results from the multivariate VAR model indicate that only short-term interest rate significantly influence the stock market volatility, while conditional stock return volatility is significant in explaining the volatility of industrial production, inflation, and treasury bill rate. Conclusion: The findings suggest an increasing interdependence between the money market and equity market as well as the macroeconomic fundamentals of Bangladesh.

Tests for Asymmetry and Structure Changes in Retail Price Volatility of Fresh Common Squid in the Republic of Korea (신선 물오징어 소매가격 변동성의 구조변화와 비대칭성 검증)

  • Nam, Jongoh;Sim, Seonghyun
    • Ocean and Polar Research
    • /
    • v.37 no.4
    • /
    • pp.357-368
    • /
    • 2015
  • This study analyzed structural changes and asymmetry of price volatility during the period before and after a point of structural change in price volatility, using the Korean fresh common squid daily retail price data from January 1, 2004 to September 30, 2015. This study utilized the following analytical methods: the unit-root test was applied to ensure the stability of the data, the Quandt-Andrews breakpoint test was applied to find the point of structural change, and the Glosten-Jagannathan-Runkle GARCH and EGARCH models were applied to investigate the asymmetry of price volatility. The empirical results of this study are as follows. First, ADF, PP, KPSS and Zivot-Andrews tests showed that the daily retail price change rate of the Korean fresh common squid differentiated by logarithm was stable. Secondly, the ARIMA (2,1,2) model was selected by information criteria such as AIC, SC, and HQ. Thirdly, the Quandt-Andrews breakpoint test found that a single structural change in price volatility occurred on June 11, 2009. Fourthly, the Glosten-Jagannathan-Runkle GARCH and EGARCH models showed that estimates of coefficients within the models were statistically significant before and after structural change and also that asymmetry as a leverage effect existed before and after structural change.

Uniform Ergodicity and Exponential α-Mixing for Continuous Time Stochastic Volatility Model

  • Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.229-236
    • /
    • 2011
  • A continuous time stochastic volatility model for financial assets suggested by Barndorff-Nielsen and Shephard (2001) is considered, where the volatility process is modelled as an Ornstein-Uhlenbeck type process driven by a general L$\'{e}$vy process and the price process is then obtained by using an independent Brownian motion as the driving noise. The uniform ergodicity of the volatility process and exponential ${\alpha}$-mixing properties of the log price processes of given continuous time stochastic volatility models are obtained.

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

Threshold-asymmetric volatility models for integer-valued time series

  • Kim, Deok Ryun;Yoon, Jae Eun;Hwang, Sun Young
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.295-304
    • /
    • 2019
  • This article deals with threshold-asymmetric volatility models for over-dispersed and zero-inflated time series of count data. We introduce various threshold integer-valued autoregressive conditional heteroscedasticity (ARCH) models as incorporating over-dispersion and zero-inflation via conditional Poisson and negative binomial distributions. EM-algorithm is used to estimate parameters. The cholera data from Kolkata in India from 2006 to 2011 is analyzed as a real application. In order to construct the threshold-variable, both local constant mean which is time-varying and grand mean are adopted. It is noted via a data application that threshold model as an asymmetric version is useful in modelling count time series volatility.

The CUSUM test for stochastic volatility models

  • Kim, Moo-Sup;Lee, Sang-Yeol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1305-1310
    • /
    • 2010
  • In this paper, we consider a change point test for stochastic volatility models. By considering the relation between moments of the logarithms of squared returns and the parameters, we construct the cusum test to detect changes of the parameters. We also carry out a simulation study and verify that the proposed test is more powerful than the cusum test proposed by Kokoszka and Leipus (2000).

Volatility Forecasting of Korea Composite Stock Price Index with MRS-GARCH Model (국면전환 GARCH 모형을 이용한 코스피 변동성 분석)

  • Huh, Jinyoung;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.429-442
    • /
    • 2015
  • Volatility forecasting in financial markets is an important issue because it is directly related to the profit of return. The volatility is generally modeled as time-varying conditional heteroskedasticity. A generalized autoregressive conditional heteroskedastic (GARCH) model is often used for modeling; however, it is not suitable to reflect structural changes (such as a financial crisis or debt crisis) into the volatility. As a remedy, we introduce the Markov regime switching GARCH (MRS-GARCH) model. For the empirical example, we analyze and forecast the volatility of the daily Korea Composite Stock Price Index (KOSPI) data from January 4, 2000 to October 30, 2014. The result shows that the regime of low volatility persists with a leverage effect. We also observe that the performance of MRS-GARCH is superior to other GARCH models for in-sample fitting; in addition, it is also superior to other models for long-term forecasting in out-of-sample fitting. The MRS-GARCH model can be a good alternative to GARCH-type models because it can reflect financial market structural changes into modeling and volatility forecasting.

Block Trading Based Volatility Forecasting: An Application of VACD-FIGARCH Model

  • TU, Teng-Tsai;LIAO, Chih-Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.4
    • /
    • pp.59-70
    • /
    • 2020
  • The purpose of this study is to construct the ACD model for the block trading volume duration. The ACD model based on the block trading volume duration is referred to as Volume ACD (VACD) in this study. By integrating with GARCH-type models, the VACD based GARCH type models, which include VACD-GARCH, VACD-IGARCH and VACD-FIGARCH models, are set up. This study selects Chunghwa Telecom (CHT) Inc., offering the America Depository Receipt (ADR) in NYSE, to investigate the block trading volume duration in Taiwanese equity market. The empirical results indicate that the long memory in volume duration series increases dependence at level of volatility clustering by VACD (2,1)-FIGARCH (3,d,1) model. Moreover, the VACD (2,1)-IGARCH (1,1) exhibits relatively better performance of prediction on capturing block trading volume duration. This volatility model is more appropriate in this study to portray the change of the CHT Inc. prices and provides more information about the volatility process for investment strategy, which can be a reference indicator of financial asset pricing, hedging strategy and risk management.

Multiple-threshold asymmetric volatility models for financial time series (비대칭 금융 시계열을 위한 다중 임계점 변동성 모형)

  • Lee, Hyo Ryoung;Hwang, Sun Young
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.347-356
    • /
    • 2022
  • This article is concerned with asymmetric volatility models for financial time series. A generalization of standard single-threshold volatility model is discussed via multiple-threshold in which we specialize to twothreshold case for ease of presentation. An empirical illustration is made by analyzing S&P500 data from NYSE (New York Stock Exchange). For comparison measures between competing models, parametric bootstrap method is used to generate forecast distributions from which summary statistics of CP (Coverage Probability) and PE (Prediction Error) are obtained. It is demonstrated that our suggestion is useful in the field of asymmetric volatility analysis.

Maximum likelihood estimation of stochastic volatility models with leverage effect and fat-tailed distribution using hidden Markov model approximation (두꺼운 꼬리 분포와 레버리지효과를 포함하는 확률변동성모형에 대한 최우추정: HMM근사를 이용한 최우추정)

  • Kim, TaeHyung;Park, JeongMin
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.501-515
    • /
    • 2022
  • Despite the stylized statistical features of returns of financial returns such as fat-tailed distribution and leverage effect, no stochastic volatility models that can explicitly capture these features have been presented in the existing frequentist approach. we propose an approximate parameterization of stochastic volatility models that can explicitly capture the fat-tailed distribution and leverage effect of financial returns and a maximum likelihood estimation of the model using Langrock et al. (2012)'s hidden Markov model approximation in a frequentist approach. Through extensive simulation experiments and an empirical analysis, we present the statistical evidences validating the efficacy and accuracy of proposed parameterization.