Acknowledgement
This work was supported by a grant from the National Research Foundation of Korea (NRF-2021R1F1A1047952).
References
- Belisle CJP (1992). Convergence theorems for a class of simulated annealing algorithms, Journal of Applied Probability, 29, 885-895. https://doi.org/10.1017/S002190020004376X
- Bollerslev T (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31(3), 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
- Byrd RH, Lu P, Nocedal J, and Zhu C (1995). A limited memory algorithm for bound constrained optimization, SIAM Journal on Scientific Computing, 16, 1190-1208. https://doi.org/10.1137/0916069
- Choi SW, Hwang SY, and Lee SD (2020). Volatility-non-stationary GARCH(1,1) models featuring thresholdasymmetry and power transformation, Korean Journal of Applied Statistics, 33, 713-722. https://doi.org/10.5351/KJAS.2020.36.6.713
- Choi SW, Yoon JE, Lee SD, and Hwang SY (2021). Asymmetric and non-stationary GARCH(1,1) models: parametric bootstrap to evaluate forecasting performance, Korean Journal of Applied Statistics, 34, 611-621. https://doi.org/10.5351/KJAS.2021.34.4.611
- Engle RF (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987-1008. https://doi.org/10.2307/1912773
- Fletcher R and ReevesCM(1964). Function minimization by conjugate gradients. Computer Journal, 7, 148-154. https://doi.org/10.1093/comjnl/7.2.148
- Guerrout E, Ait-Aoudia S, Michelucci D, and Mahiou R (2018). Hidden Markov random field model and Broyden-Fletcher-Goldfarb-Shanno algorithm for brain image segmentation, Journal of Experimental & Theoretical Artificial Intelligence, 30(3), 415-427. https://doi.org/10.1080/0952813x.2017.1409280
- Hwang SY, Baek JS, Park JA, and Choi MS (2010). Explosive volatilities for threshold-GARCH processes generated by asymmetric innovations, Statistics & Probability Letters, 80, 26-33. https://doi.org/10.1016/j.spl.2009.09.008
- Kim DR and Hwang SY (2020). Forecasting evaluation via parametric bootstrap for threshold-INARCH models, Communications for Statistical Applications and Methods, 27, 177-187. https://doi.org/10.29220/CSAM.2020.27.2.177
- Miguel JA and Olave P (1999). Bootstrapping forecast intervals in ARCH models, TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 8, 345-364. https://doi.org/10.1007/BF02595875
- Nelder JA and Mead R (1965). A simplex algorithm for function minimization. Computer Journal, 8, 308-313. https://doi.org/10.1093/comjnl/7.4.308
- Nocedal J and Wright SJ (1999). Numerical Optimization. Springer.
- Rabemananjara R and Zakoian JM (1993). Threshold ARCH models and asymmetries in volatility, Journal of Applied Econometrics, 8, 31-49. https://doi.org/10.1002/jae.3950080104
- Tsay RS (2010). Analysis of Financial Time Series, Third Ed, Wiley, New York.
- Yoon JE and Hwang SY (2015). Volatility computations for financial time series : high frequency and hybrid method, Korean Journal of Applied Statistics, 28, 1163-1170. https://doi.org/10.5351/KJAS.2015.28.6.1163
- Yoon JE, Lee JW, and Hwang SY (2014). News impact curves of volatility for asymmetric GARCH via LASSO, Korean Journal of Applied Statistics, 27, 159-168. https://doi.org/10.5351/KJAS.2014.27.1.159