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Abstract

In this paper, we consider a change point test for stochastic volatility models. By
considering the relation between moments of the logarithms of squared returns and the
parameters, we construct the cusum test to detect changes of the parameters. We also
carry out a simulation study and verify that the proposed test is more powerful than
the cusum test proposed by Kokoszka and Leipus (2000).
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1. Introduction

The stochastic volatility (SV) model is one of the most interesting and prominent condi-
tional volatility models in financial time series together with GARCH models proposed by
Bollerslev (1986). The change point test has received much attention since financial time
series frequently experience changes in underlying models. In this study, we focus on the
change point detection problem for SV models.

For decades, several authors have investigated change point tests for ARCH-type mod-
els, which are also applicable to the SV models. For instance, see Inclan and Tiao (1994),
Kokoszka and Leipus (2000), and Andreou and Ghysels (2002). Their study focused on the
cusum test of squared returns. However, such cusum tests are not sufficient to reflect the
change of parameters in SV models, since the second moment of returns does not totally
correspond to the parameters in the model. Thus, by noting that the parameters corre-
spond to the vector consisting of the mean, variance, and first-order autocovariance of the
logarithm of squared returns, we construct a cusum test which examines the change of the
corresponding sample moments. It turns out that the cusum test statistic is easy to calculate
and its asymptotic null distribution does not depend upon the error distribution, while most
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estimation procedures require intensive calculations and depend on the error distribution.
For general viewpoint of the cusum test, we refer to Im and Cho (2009), Lee et al. (2010),
Na et al. (2010), and Park and Lee (2007).

The organization of this paper is as follows. In Section 2, we introduce the cusum test and
the change point estimator based on it. In Section 3, we demonstrate the performance of our
test through a simulation study. In Section 4, we address the asymptotic null distribution
of the cusum test and provide the proof of the result.

2. Main result

We consider an SV model:

re = &eht/?
{ he = ot Bhey + o6 for each t € Z, (2.1)

where o € R, |8] < 1,0 < 0 < o0, and {&;} and {&} are i.i.d. sequences of random variables,
defined on a probability space (2, F, P), with zero mean and unit variance. Moreover, we as-
sume that {&;} and {¢;} are independent. Here, {r;} and {e/*} represent an observed strictly
stationary solution of (2.1) and the unobserved conditional variances of {r;}, respectively.
Let 8 = (o, B, 0).

Let rg,71,- -+ ,7, be observed returns. Suppose that one wishes to test
Ho : 0 is constant in {ro,r1, - ,r,} vs. Hjp:not Ho.

Assume that Hg holds and & # 0 almost surely. Let y; := logr? = hy+1;, where n; := log £2.
We have from easy calculation that

_ Cov(hg, hi—1) _ Cov(ye, ye—1)
Var(hy) Var(y;) — Var(n;)’
=E(h)(1 - B) = {E(y:) — E(m) }(1 - 8),

0% = Var(hy)(1 — 5%) = {Var(y,) — Var(m)}(1 - 5%),
i.e., all parameters are functionals of E(y;), Var(y:), Cov(y:, y:—1), and vice verse. In other
words, a one-to-one relation holds between the parameters and moments. From this view-

point, it is reasonable to examine the moment change to test the hypotheses. Thus, we
consider the cusum statistic T}, 1= n~! maxi<k<n D;C E;le, where

k
t=1
and X, is a consistent and nonsingular estimate of

= lim nVar (Z Wt> ,

t=1

3\??

; 1
Z b We=[e =79, e —9)% (e — D1 — 1), gzﬁz
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where Wy = [ye — 1, (s — 1), (ye — 1) (ye—1 — p))" and o := E(y1). Later, a condition of the
existence of the limit will be presented. Here, we employ as the estimator of X

. 1< - o~ -
Yp=— Wy —WYW; — W)

L D= W7 =)

In 1 n—h B B N B B B _ B

+ hzzzl — ;{(Wt = W)Wign = W) + (Wi — W)(Wy = W)'},
where {1, } is an increasing sequence of positive integers with I, = o(n) and W = 1 3" | W;.
Actually, 3, can be seen as the sample moment with respect to X, where [,, indicates the
order of truncation in finite approximation (4.1).

It can be proven that under mild conditions, T;, has a standard asymptotic null distribution
(Theorem 4.1) of which critical values are available in Lee et al. (2003). Its proof is provided
in Section 4.

When a single change point exists, we estimate it by

7, = n~targmax D} $1 Dy (2.2)
1<k<n

In Section 3, we will examine its performance in finite samples.

3. Simulation study

In this section, we evaluate the performance of T;, by a simulation study. Furthermore, we
compare it with the cusum test of squared returns. First, we evaluate the sizes of the tests
at nominal level 0.05. We consider several settings for the parameter 8 and the distribution
of &, while the distribution of ¢; is fixed to be a standard normal distribution. We use the
sample size n = 1,000 and [,, = 10 in the estimation of X. We reject Hy at nominal level
0.05 when T,, > 3.004. Table 3.1 presents their sizes obtained from 1,000 repetitions. Most
of them are acceptable, although the cusum of squared returns reveals a slight size distortion
in some cases such as 8 = (—0.706,0.9,0.135).

Table 3.1 The sizes of the tests at nominal level 0.05
Test Th CUSUM of squared returns
distribution of & Normal  ¢(10) t(3)  Normal ¢(10) t(3)
(—0.821,0.9,0.675) 0.047 0.055 0.042 0.050 0.078 0.047
6 (-0.736,0.9,0.363) 0.063 0.052  0.047 0.084 0.076 0.042
(—0.706,0.9,0.135) 0.037 0.058  0.041 0.023 0.021 0.018

Next, we examine the power of the tests and calculate the MSE of the change point
estimators. The change point estimator based on the cusum test of squared returns is defined

in the same pattern as (2.2). Specifically, let {egl)} and {ef)} be mutually independent i.i.d.
sequences. Assume that {hil)} and {hiz)} are strictly stationary sequences satisfying

h)(fl) =y + [31h§1_)1 + 0'16151),

h? = ag + Boh?) + oael,
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where a1, a0 € R, [51]| V |B2| <1, 01 Aog >0, (a1, P1,01) # (ag, B2,02). Finally, we define
an SV process with a change point:

e
. §tehtl 12t < [nr],
t = (2)
§teht2 12t > [n],
where [n7] (0 < 7 < 1) indicates the change point. A simulation study is carried out in
diverse settings regarding the 7, the parameters, and the distribution of &. We consider 3
cases of parameter changes:

e Case 1: 0 changes from (—0.821,0.9,0.675) to (—0.706,0.9,0.135) at [n7],
e Case 2 : 0 changes from (—0.821,0.9,0.675) to (—0.736,0.9,0.363) at [n7],
e Case 3 : 0 changes from (—0.736,0.9,0.363) to (—0.706,0.9,0.135) at [n7].

Table 3.2 presents the powers of T}, and the cusum test of squared returns. As seen in the
table, the former has good powers except the case of 7 = 0.75, while the latter produces very
low powers. Table 3.3 presents the root MSE of the change point estimators. In general,
the performance of a change point estimator depends on that of the relevant test statistic.
From the result, we can see that 7, is more accurate than the other as T,, is more powerful
than the cusum test of squared returns. All these results confirm that T}, is more suitable
than the cusum test of squared returns.

Table 3.2 The powers of the tests at nominal level 0.05

Test Th CUSUM of squared returns
distribution of §,  Normal  ¢(10) t(3)  Normal ¢(10) t(3)
Case 1 0.841 0.850 0.819 0.251 0.224 0.084
7=0.25 Case 2 0.436 0.462 0.434 0.108 0.105 0.038
Case 3 0.177 0.162 0.136 0.073 0.077 0.025
Case 1 0.938 0.931  0.909 0.222 0.220 0.112
7=0.5 Case 2 0.640 0.635 0.595 0.123 0.113 0.082
Case 3 0.234 0.242 0.216 0.099 0.095 0.082
Case 1 0.376 0.392 0.380 0.106 0.102 0.080
7=0.75 Case 2 0.200 0.193  0.197 0.090 0.102 0.056
Case 3 0.085 0.103  0.093 0.077 0.048 0.031

Table 3.3 The root MSE of the change point estimators

Estimator Tn CUSUM of squared returns
distribution of &  Normal  ¢(10) t(3)  Normal ¢(10) t(3)
Case 1 0.048 0.053 0.061 0.104 0.130 0.245
7=0.25 Case?2 0.100 0.097 0.114 0.284 0.278 0.297
Case 3 0.145 0.145 0.161 0.167 0.165 0.259
Case 1 0.064 0.067  0.067 0.141 0.123 0.140
T=0.5 Case 2 0.083 0.085 0.087 0.154 0.162 0.151
Case 3 0.104 0.105 0.106 0.152 0.156 0.160
Case 1 0.209 0.208  0.205 0.256 0.286 0.277
7=0.75 Case 2 0.247 0.238 0.228 0.264 0.283 0.270
Case 3 0.281 0.285  0.296 0.338 0.367 0.313
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4. Asymptotic result and its proof

We assume that the following conditions hold:

A1l {h;} is strictly stationary and absolutely regular with exponential decay.
A2 Both ¢y and 7y have the finite moments of all orders.

A3 Y is nonsingular.

Remark. A1l has been vastly investigated (cf. Carrosco et al., 2002). For the definition
and the details of absolute regularity, we refer to Davydov (1973). A2 is not only stringent
but also includes the case that £y has a heavy tail such as the regularly varying tail. A1-A2
imply the existence of ¥ and

(oo}
% = Var(W1) + > {Cov(Wy, Wigx) + Cov(Wiik, Wi)} (4.1)
k=1
(cf. Billingsley, 1995, Theorem 27.4), since {y; — u} is strong mixing with exponential
decaying rate and has finite moments of all orders. The nonsingularity of ¥ depends on
the parameters. If the distribution of (&g, €) is known, ¥ is obtainable but its calculation
is somewhat tedious.

In what follows, B(t) = (B1(t), Ba(t), Bs(t))’ stands for a standard 3-dimensional Brow-
nian motion and B°(t) = (B (¢), BS(t), B5(t)) := B(t) — tB(1). Also, D[0,1] represents
the complete and separable metric space of the real-valued cadlag functions defined on the
interval [0, 1] endowed with the Skorohod metric (cf. Billingsley, 1999).

Theorem 4.1 Assume that Hg holds. Under A1-A3,

3

-1 1 ° 2
n max D) Z D, = su B
1<k<n * g 0<s1<)1z{ }

Proof. Due to A1-A2, {y;—u} is strictly stationary and absolutely regular with exponential
decaying rate (cf. Carrasco et al., 2002) and has finite moments of all orders. Let A be a
column vector in R*\{0} and A = X’Y~/2. Then, we have

lim Var <§ A Wt> = N Var(Wp)X + 2 § "N Cov(Wi, Wigp)A = NEX = VA >0,
n—soo N
t=1 k=1

(cf. Billingsley, 1995; Theorem 27.4). From the functional central limit theorem in Gallant
(1987), Theorem 2, page 519, we obtain that for every A € R*\{0},

[r25]

\/an Z{)\ W, — E(NWy)} = Bi(s) in D[0,1]. (4.2)

Thus, by a standard argument, we can obtain that

[ns]

-2 L Z{Wt E(W,)} = B(s) in D?0,1],
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then, by the mapping theorem (cf. Billingsley, 1999)
_ 1 o R
N 1/2%1)[”3] = B°(s) in D3|0,1],
where Dy, = S5, W, — E S W,. Note that

1
T 12 |Di = Di| = op(1)

(x| := V&'z for x € R?), since

k n k n k n !
Dy —Dip=(§—p)|0,2 Zyt—EZyt azyt_kzyt“"zytfl_ﬁzytfl )
t=1 nia t=1 nia t=1 i3

and we obtain from (4.2) that

7113132{” Zyt—nyt Op(1).

Hence, by the mapping theorem and the consistency of i]n, the proof is completed. 0
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