• Title/Summary/Keyword: volatility models

Search Result 193, Processing Time 0.018 seconds

Development of a Stochastic Model for Wind Power Production (풍력단지의 발전량 추계적 모형 제안에 관한 연구)

  • Ryu, Jong-hyun;Choi, Dong Gu
    • Korean Management Science Review
    • /
    • v.33 no.1
    • /
    • pp.35-47
    • /
    • 2016
  • Generation of electricity using wind power has received considerable attention worldwide in recent years mainly due to its minimal environmental impact. However, volatility of wind power production causes additional problems to provide reliable electricity to an electrical grid regarding power system operations, power system planning, and wind farm operations. Those problems require appropriate stochastic models for the electricity generation output of wind power. In this study, we review previous literatures for developing the stochastic model for the wind power generation, and propose a systematic procedure for developing a stochastic model. This procedure shows a way to build an ARIMA model of volatile wind power generation using historical data, and we suggest some important considerations. In addition, we apply this procedure into a case study for a wind farm in the Republic of Korea, Shinan wind farm, and shows that our proposed model is helpful for capturing the volatility of wind power generation.

A recent overview on financial and special time series models (금융 및 특수시계열 모형의 조망)

  • Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • Contrasted with the standard linear ARMA models, financial time series exhibits non-standard features such as fat-tails, non-normality, volatility clustering and asymmetries which are usually referred to as "stylized facts" in financial time series context (Terasvirta, 2009). We are accordingly led to ad hoc models (apart from ARMA) to accommodate stylized facts (Andersen et al., 2009). The paper aims to give a contemporary overview on financial and special time series models based on the recent literature and on the author's publications. Various models are illustrated including asymmetric models, integer valued models, multivariate models and high frequency models. Selected statistical issues on the models are discussed, bringing some perspectives to the future works in this area.

Forecasting evaluation via parametric bootstrap for threshold-INARCH models

  • Kim, Deok Ryun;Hwang, Sun Young
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.177-187
    • /
    • 2020
  • This article is concerned with the issue of forecasting and evaluation of threshold-asymmetric volatility models for time series of count data. In particular, threshold integer-valued models with conditional Poisson and conditional negative binomial distributions are highlighted. Based on the parametric bootstrap method, some evaluation measures are discussed in terms of one-step ahead forecasting. A parametric bootstrap procedure is explained from which directional measure, magnitude measure and expected cost of misclassification are discussed to evaluate competing models. The cholera data in Bangladesh from 1988 to 2016 is analyzed as a real application.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

Assessments for MGARCH Models Using Back-Testing: Case Study (사후검증(Back-testing)을 통한 다변량-GARCH 모형의 평가: 사례분석)

  • Hwang, S.Y.;Choi, M.S.;Do, J.D.
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.261-270
    • /
    • 2009
  • Current financial crisis triggered by shaky U.S. banking system adds to the emphasis on the importance of the volatility in controlling and understanding financial time series data. The ARCH and GARCH models have been useful in analyzing economic time series volatilities. In particular, multivariate GARCH(MGARCH, for short) provides both volatilities and conditional correlations between several time series and these are in turn applied to computations of hedge-ratio and VaR. In this short article, we try to assess various MGARCH models with respect to the back-testing performances in VaR study. To this end, 14 korean stock prices are analyzed and it is found that MGARCH outperforms rolling window, and BEKK and CCC are relatively conservative in back-testing performance.

Prediction of Maximum Liquid-phase Penetration in Diesel Spray: A review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.117-125
    • /
    • 2008
  • The correlations for the prediction of maximum liquid-phase penetration in diesel spray are reviewed in this study. The existing models developed for the prediction of maximum liquid-phase penetration can be categorized as the zero-dimensional (empirical) model, the multi-dimensional model and the other model. The existing zero-dimensional model can be classified into four groups and the existing multidimensional models can be classified into three groups. The other model includes holistic hydraulic and spray model. The maximum liquid-phase penetration is mainly affected by nozzle diameter, fuel volatility, injection pressure, ambient gas pressure, ambient gas density and fuel temperature. In the case of empirical correlations incorporated with spray angle, the predicted results will be different according to the selection of correlation for spray angle. The research for the effect of boiling point temperatures on maximum liquid-phase penetration is required. In the case of multidimensional model, there exist problems of the grid and spray sub-models dependency effects.

  • PDF

The Predictive Power of Multi-Factor Asset Pricing Models: Evidence from Pakistani Banks

  • SALIM, Muhammad;HASHMI, Muhammad Arsalan;ABDULLAH, A.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.11
    • /
    • pp.1-10
    • /
    • 2021
  • This paper compares the performance of Fama-French three-factor and five-factor models using a dataset of 20 Pakistani commercial banks for the period 2011 to 2020. We focus on an emerging economy as the findings from earlier studies on developed countries cannot be generalized in emerging markets. For empirical analysis, twelve portfolios were developed based on size, market capitalization, investment strategy, and growth. Subsequently, we constructed five Fama-French factors namely, RM, SMB, HML, RMW, and CMA. The OLS regression technique with robust standard errors was applied to compare the predictive power of both the Fama-French models. Further, we also compared the mean-variance efficiency of the Fama-French models through the GRS test. Our empirical analysis provides three unique and interesting findings. First, both asset pricing models have similar predictive power to explain the expected portfolio returns in most cases. Second, our results from the GRS test suggest that there is no noticeable difference in the mean-variance efficiency of one asset pricing model over the other. Third, we find that all factors of both Fama-French models are statistically significant and are important for explaining the volatility of expected commercial bank returns in the context of Pakistan.

The Impact of COVID-19 Pandemic on the Relationship Structure between Volatility and Trading Volume in the BTC Market: A CRQ approach (COVID-19 팬데믹이 BTC 변동성과 거래량의 관계구조에 미친 영향 분석: CRQ 접근법)

  • Park, Beum-Jo
    • Economic Analysis
    • /
    • v.27 no.1
    • /
    • pp.67-90
    • /
    • 2021
  • This study found an interesting fact that the nonlinear relationship structure between volatility and trading volume changed before and after the COVID-19 pandemic according to empirical analysis using Bitcoin (BTC) market data that sensitively reflects investors' trading behavior. That is, their relationship appeared positive (+) in a stable market state before COVID-19 pandemic, as in theory based on the information flow paradigm. In a state under severe market stress due to COVID-19 pandemic, however, their dependence structure changed and even negative (-). This can be seen as a consequence of increased market stress caused by COVID-19 pandemics from a behavioral economics perspective, resulting in structural changes in the asset market and a significant impact on the nonlinear dependence of volatility and trading volume (in particular, their dependence at extreme quantiles). Hence, it should be recognized that in addition to information flows, psychological phenomena such as behavioral biases or herd behavior, which are closely related to market stress, can be a key in changing their dependence structure. For empirical analysis, this study performs a test of Ross (2015) for detecting a structural change, and proposes a Copula Regression Quantiles (CRQ) approach that can identify their nonlinear relationship structure and the asymmetric dependence in their distribution tails without the assumption of i.i.d. random variable. In addition, it was confirmed that when the relationship between their extreme values was analyzed by linear models, incorrect results could be derived due to model specification errors.

Comparison of a Class of Nonlinear Time Series models (GARCH, IGARCH, EGARCH) (이분산성 시계열 모형(GARCH, IGARCH, EGARCH)들의 성능 비교)

  • Kim S.Y.;Lee Y.H.
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2006
  • In this paper, we analyse the volatilities in financial data such as stock prices and exchange rates in term of a class of nonlinear time series models. We compare the performance of Generalized Autoregressive Conditional Heteroscadastic(GARCH) , Integrated GARCH(IGARCH), Exponential GARCH(EGARCH) models by KOSPI (Korean stock Prices Index) data. The estimation for the parameters in the models was carried out by the ML methods.

Performance analysis of EVT-GARCH-Copula models for estimating portfolio Value at Risk (포트폴리오 VaR 측정을 위한 EVT-GARCH-코퓰러 모형의 성과분석)

  • Lee, Sang Hun;Yeo, Sung Chil
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.753-771
    • /
    • 2016
  • Value at Risk (VaR) is widely used as an important tool for risk management of financial institutions. In this paper we discuss estimation and back testing for VaR of the portfolio composed of KOSPI, Dow Jones, Shanghai, Nikkei indexes. The copula functions are adopted to construct the multivariate distributions of portfolio components from marginal distributions that combine extreme value theory and GARCH models. Volatility models with t distribution of the error terms using Gaussian, t, Clayton and Frank copula functions are shown to be more appropriate than the other models, in particular the model using the Frank copula is shown to be the best.