• Title/Summary/Keyword: volatile flavors

Search Result 72, Processing Time 0.033 seconds

Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams

  • Kim, Young Joo;Park, Sung Yong;Lee, Hong Chul;Yoo, Seung Seok;Oh, Sejong;Kim, Kwang Hyun;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.122-130
    • /
    • 2016
  • The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham.

Studies on the Volatile Flavor Compounds of Sesame Oils with Roasting Temperature (볶음온도에 따른 참기름의 휘발성향기성분 변화)

  • Kim, Hyeon-Wee;Park, Ki-Moon;Choi, Chun-Un
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.238-245
    • /
    • 2000
  • This study was investigated to compare the changes of flavors in sesame oil with roasting temperature $(110^{\circ}C{\sim}230^{\circ}C)$. In the results of analyzing the volatile flavor compounds of sesame oil with GC and GC/MS, 26 pyrazines, 11 pyridines, 9 thiazoles, 6 furans, 8 pyrroles, 5 phenols, 8 aldehydes, 8 hydrocarbons, 7 alcohols, 2 indoles, 3 ketones, 10 acids, 4 nitriles, 7 esters, and 5 others were isolated, identified, and quantified. The total amount of flavor compounds was increased with roasting temperature. Detected flavors could be devided into top(peak No. $1{\sim}91$), middle$(92{\sim}197)$ and last note$(198{\sim}224)$ by rentention time. The top notes(initial content 19.87 ppm) which contain pyrazines and provide representative roasted flavors were increased significantly with roasting temperature. Initial content of middle note(17.72 ppm) was increased to 36.71 ppm at $170^{\circ}C$, to 95.61 ppm at $220^{\circ}C$, and to 138.62 ppm at $230^{\circ}C$. Last note was almost unchanged up to $170^{\circ}C$ and increased at $190^{\circ}C$, whereas it indicated a tendency to decrease at $230^{\circ}C$. Pyrazines such as methylpyrazine, 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine which indicate the major components among volatile flavors were increased slightly up to $150^{\circ}C$ and revealed the higher increase than any other components above $170^{\circ}C$. This tendency was also similar to pyridines, thiazoles, and furans. Most of these compounds are assumed to be developed by thermochemical reactions of sesame components by roasting above $170^{\circ}C$. It seemed that a lot of increase in phenols above $210^{\circ}C$ resulted from the production of guaiacol. Acids were almost unchanged up to $190^{\circ}C$, increased at $210^{\circ}C$, and then decreased above $220^{\circ}C$. It seemed to be resulted from pyrolysis of free fatty acids formed from thermal oxidation of oil.

  • PDF

Comparison of Volatile Flavor Compounds in Meat of the Blue Crab Using V-SDE and SPME Methods (V-SDE와 SPME법에 의한 꽃게(Portunus trituberculatus)육의 휘발성 향기성분 비교)

  • Cha, Yong-Jun;Cho, Woo-Jin;Jeong, Eun-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.441-446
    • /
    • 2006
  • Volatile flavor compounds in meat of the blue crab Portunus trituberculatus were compared using vacuum simultaneous steam distillation-solvent extraction (V-SDE) and solid phase microextraction (SPME)/ gas chromatography (GC)/ mass selective detection (MSD) methods. A total of 100 volatile flavor compounds were identified by both methods: 77 by V-SDE and 59 by SPME. These compounds were composed of 17 aldehydes, 12 ketones, 19 alcohols, 5 esters, 4 sulfur-containing compounds, 6 nitrogen-containing compounds, 23 aromatic compounds, 6 hydrocarbons, 2 terpenes, and 6 miscellaneous compounds. Although more compounds were detected using V-SDE than using SPME, the levels of all groups detected, except esters, were higher using SPME than using V-SDE. In addition to trimethylamine, aldehydes, and aromatic compounds, the S- and N-containing compounds with low thresholds are thought to have positive roles for flavors in the meat of the blue crab.

Volatile Compounds of Pine Needle(Pinus rigida Miller) Extracts (소나무(Pinus rigida Miller) 잎 추출물의 휘발성 성분)

  • 홍원택;고경민;이재곤;장희진;곽재진
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • This study was conducted to evaluate whether pine needle extracts can be used as tobacco flavors. Yield of essential oil, absolute and oleoresin extracted from pine needles is 0.07%, 1.20% and 6.08% respectively. The volatile compounds isolated from the three types of extracts were analyzed by gas chromatography(GC) and mass selective detector(MSD). Total 72 components were identified in the three type of extracts including 26 hydrocarbons, 16 alcohols, 13 esters, 9 acids, 4 phenols, 2 aldehydes and 2 ketones compounds. The major components were $\beta$-pinene, $\beta$-caryophyllene, $\delta$-cadinene and 4,5-dimethyl-1,3 -dioxol-2-one. There were 49 volatile components in the absolute, 44 components in the essential oil and 26 components in the oleoresin. The content of hydrocarbons and alcohols was higher in the essential oil extracted by simultaneous distillation extraction(SDE) than in others, while that of esters and acids was higher in the absolute than in others. Especially, phenols and ketones were identified only in the oleoresin. The components such as $\beta$-pinene, bornyl acetate, $\alpha$-terpineol and oxygenated terpenes have characteristic piney and fresh green odor. The contents of these components was higher in the essential oil and the absolute than in the oleoresin. Therefor, the essential oil and the absolute are expected to be more useful than the oleoresin as tobacco flavor.

Volatile Components of Traditional Gochujang Produced from Small Farms according to Each Cultivation Region (지역별 소규모 농가 생산 전통 고추장의 휘발성 성분에 관한 연구)

  • Hong, Yeo Joo;Son, Seong Hye;Kim, Ha Youn;Hwang, In Guk;Yoo, Seung Seok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.4
    • /
    • pp.451-460
    • /
    • 2013
  • The purpose of this study is to investigate the volatile compounds of Korean traditional gochujang from various districts. The volatiles from each traditional gochujang are being extracted by simultaneous steam distillation extraction (SDE), and analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Twenty compounds are identified as major volatile components which include 8 esters, 4 alcohols and 4 acids. The most traditional gochujang possesses more volatile components rather than commercial gochujang products. Most acids come from fatty acids and the alcohols derive from the oxidative degradation of linolenic acid. The most abundant volatile compounds for both traditional and commercial gochujang include 10 compounds such as 2-methyl-1-propanol, hexanal, 2-methyl-1-butanol, octanoic acid ethyl ester, as well as the various type of acids and esters. They represent most of the total GC peak areas, respectively. From the results, the characteristics of the flavors for traditional gochujang from each district are not clear but have shown various components than the commercial products.

Optimization and Flavor Quality of Enzymatic Hydrolysate from Dark Muscle of Skipjack

  • Jang, H.J.;Kim, M.C.;Jung, E.M.;Shin, E.C.;Lee, S.H.;Lee, S.J.;Kim, S.B.;Lee, Y.B.
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • Enzymatic hydrolysis of dark muscle of skipjack was optimized by using response surface methodology. Three factors of independent values were pH (4.2 to 9.8), time (0.6 to 3.4 hrs) and temperature (34℃ to 76℃), and independent values were optical density and brix. The optimum conditions for enzymatic hydrolysis were pH 7.0 to 8.0, 55℃ and 3 hrs. The headspace volatile compounds of reaction flavors using the enzymatic hydrolysate, cysteine and xylose were identified by using the combination of a canister system, gas chromatography and mass selective detector. Among 67 compounds, we identified 8 sulfur-containing compounds and 7 furans which were thought to be highly related to meat-like flavors.

Headspace Hanging Drop Liquid Phase Microextraction and Gas Chromatography-Mass Spectrometry for the Analysis of Flavors from Clove Buds

  • Jung, Mi-Jin;Shin, Yeon-Jae;Oh, Se-Yeon;Kim, Nam-Sun;Kim, Kun;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.231-236
    • /
    • 2006
  • A novel sample pretreatment technique, headspace hanging drop liquid phase microextraction (HS-LPME) was studied and applied to the determination of flavors from solid clove buds by gas chromatography-mass spectrometry (GC-MS). Several parameters affecting on HS-LPME such as organic solvent drop volume, extraction time, extraction temperature and phase ratio were investigated. 1-Octanol was selected as the extracting solvent, drop size was fixed to 0.6 $\mu$L. 60 min extraction time at 25 ${^{\circ}C}$ was chosen. HS-LPME has the good efficiency demonstrated by the higher partition equilibrium constant ($K_{lh}$) values and concentration factor (CF) values. The limits of detection (LOD) were 1.5-3.2 ng. The amounts of eugenol, $\beta$-caryophyllene and eugenol acetate from the clove bud sample were 1.90 mg/g, 1.47 mg/g and 7.0 mg/g, respectively. This hanging drop based method is a simple, fast and easy sample enrichment technique using minimal solvent. HSLPME is an alternative sample preparation method for the analysis of volatile aroma compounds by GC-MS.

Garlic flavor (마늘 flavor)

  • Kim, Mee Ree;Ahn, Seung Yo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.2
    • /
    • pp.176-187
    • /
    • 1983
  • Volatile flavor components of garlic and factors which influence on its flavors were reviewed. Growth, storage and processing conditions influence on the flavor intensity of garlic. To intensify garlic flavors, it is desirable that sufficient sulfate nutrition be supplied to the soil of growing garlic and that the suggested proportions of mineral composition and water content be considered. And to maintain the flavor intensity of post harvested garlic, flavor losses taken place during over inter storage mainly due to respiration, sprout and decay, have to be minimized. Among the various storage methods, combination method of post harvest hot-air drying and low temperature ($0^{\circ}C$), low humidity (RH 70-75%) is useful. The flavor of processed garlic is very much decreased as compared with that of fresh, and the decreasing rate of flavors depends on processing method. The synthetic garlic flavors were obtained by three types based on intermediate thiosulfinate, S-alk(en) yl-$\small{L}$-cyteine sulfoxlde-alliinase fission products and $\small{L}$-5-alk (en)yl thiomethylhydantoin ${\pm}$ S-oxides. These synthetic garlic flavors may be promised to be applied to food additives.

  • PDF

Supercritical Fluid Extraction of Volatile Components from Strawberry (딸기의 휘발성 향기성분의 초임계 유체 추출)

  • Lee, Hae-Chang;Seo, Hye-Young;Shin, Dong-Bin;Park, Yong-Kon;Kim, Yoon-Sook;Ji, Joong-Ryong;Choi, Hee-Don
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.615-621
    • /
    • 2009
  • In order to optimize the supercritical fluid extraction (SFE) conditions of volatile components from the strawberry, we conducted an evaluation of the sample preparation and SFE operating conditions. The analysis of the volatile components extracted by a variety of sample preparation protocols led to the identification of 30, 26, 30, and 34 volatile components in fresh, freeze-dried, 30% celite and 70% celite treatments, respectively. The 70% celite treatment was the most effective in extracting the volatile components from strawberry via SFE. Analysis of the volatile components extracted by a variety of SFE operating conditions yielded identifications of 34, 35, 34, and 35 volatile components at 3,000 psi (40, $50^{\circ}C$) and 6,000 psi (40, $50^{\circ}C$), respectively. The extraction yield of alcohols and acids, and the total volatile component contents, were highest under conditions of 3,000 psi and $55^{\circ}C$. Volatile components from the strawberry were extracted via SFE, simultaneous steam distillation and extraction (SDE), and solvent extraction (SE). The analysis of the volatile components extracted via different extraction methods resulted in the identification of 56, 34, and 32 volatile components in the SDE, SFE, and SE extracts, respectively. The total volatile component contents identified in the SDE, SFE, and SE extracts were $20.268{\pm}1.144$, $21.627{\pm}1.215$ and $2.476{\pm}0.177\;mg/kg$, respectively. The SFE extract evidenced higher contents of sweet flavors such as 2-methylbutanoic acid, 2-methylpropanoic acid, and hexanoic acid than the SDE and SE extracts. SFE proved to be the most appropriate method for the extraction of fresh volatile components from the strawberry.

Effect of Alkali Treatments on the Greenness and Volatile flavors of Sea Lettuce, Monostrima nitidum (알칼리처리가 파래의 녹색도 및 휘발성 향에 미치는 영향)

  • 이영근
    • Journal of Life Science
    • /
    • v.11 no.6
    • /
    • pp.568-573
    • /
    • 2001
  • Sea lettuce(Monostrima nitidum) were treated with several alkali agents on condition with water blanching at 9$0^{\circ}C$ for 10 min., and followed by drying and powdering, thus, the power samples treated and the not treated were then allowed to be stored at $25^{\circ}C$, dark place for 5 months. The sea lettuce powder samples were evaluated for green color intensity and volatile flavor at a month intervals. The green intensity of the samples were measured by using Hunter-lab colorimeter, therefore, the decoloration of greenness were seen in both of the samples treated and the not treated, but there were slight inhibitory effects on decoloration in the treated with alkali agents, especially in the treated with KHCO$_3$.The volatile flavor of the samples were collected by simultaneous distillation-extraction, and then the 31 flavor compounds were separated on HP-5 capillary column(25m$\times$0.25mm i.d) and identified by using GC-MS. From these results, it was presumed that the characteristic impact flavor compounds were $\beta$-cyclocitral, $\beta$-cyclohomocitral, ionene, $\alpha$-ionone and $\beta$-ionone. The total content of the characteristic impact flavor compounds decreased in the samples treated with alkali agents more alkali agents more than in the not treated, but lee decrease was observed in the treated with KHCO$_3$.

  • PDF