• Title/Summary/Keyword: visual robot

Search Result 451, Processing Time 0.04 seconds

Control of Robot Manipulators Using LQG Visual Tracking Cotroller (LQG 시각추종제어기를 이용한 로봇매니퓰레이터의 제어)

  • Lim, Tai-Hun;Jun, Hyang-Sig;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2995-2997
    • /
    • 1999
  • Recently, real-time visual tracking control for a robot manipulator is performed by using a vision feedback sensor information. In this paper, the optical flow is computed based on the eye-in-hand robot configuration. The image jacobian is employed to calculate the rotation and translation velocity of a 3D moving object. LQG visual controller generates the real-time visual trajectory. In order to improving the visual tracking performance. VSC controller is employed to control the robot manipulator. Simulation results show a better visual tracking performance than other method.

  • PDF

Tip Position Control of a Robot Manipulator using Visual Markers (영상표식 기반의 로봇 매니퓰레이터 끝점 위치 제어)

  • Lim, Sei-Jun;Lim, Hyun;Lee, Young-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.883-890
    • /
    • 2010
  • This paper proposes tip position control system which uses a visual marker to determine the tip position of a robot manipulator. The main idea of this paper is to introduce visual marker for the tracking control of a robot manipulator. Existing researches utilize stationary markers to get pattern information from them. Unlike existing researches, we introduce visual markers to get the coordinates of them in addition to their pattern information. Markers need not be stationary and the extracted coordinate of markers are used as a reference trajectory for the tracking control of a robot manipulator. To build the proposed control scheme, we first obtain intrinsic parameters through camera calibration and evaluate their validity. Secondly, we present a procedure to obtain the relative coordinate of a visual marker with respect to a camera. Thirdly, we derive the equation for the kinematics of the SCORBOTER 4pc manipulator which we use for control of manipulator. Also, we provide a flow diagram of entire visual marker tracking system. The feasibility of the proposed scheme will be demonstrated through real experiments.

Target Tracking of the Wheeled Mobile Robot using the Combined Visual Servo Control Method (혼합 비주얼 서보 제어 기법을 이용한 이동로봇의 목표물 추종)

  • Lee, Ho-Won;Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1245-1254
    • /
    • 2011
  • This paper proposes a target tracking algorithm for wheeled mobile robots using in various fields. For the stable tracking, we apply a vision system to a mobile robot which can extract targets through image processing algorithms. Furthermore, this paper presents an algorithm to position the mobile robot at the desired location from the target by estimating its relative position and attitude. We show the problem in the tracking method using the Position-Based Visual Servo(PBVS) control, and propose a tracking method, which can achieve the stable tracking performance by combining the PBVS control with Image-Based Visual Servo(IBVS) control. When the target is located around the outskirt of the camera image, the target can disappear from the field of view. Thus the proposed algorithm combines the control inputs with of the hyperbolic form the switching function to solve this problem. Through both simulations and experiments for the mobile robot we have confirmed that the proposed visual servo control method is able to enhance the stability compared to of the method using only either PBVS or IBVS control method.

A study on the computer graphic simulation of a robot control with a visual sensor (시각 센서가 있는 로보트 제어의 컴퓨터 그래픽 시뮬레이션에 관한 연구)

  • 박남렬;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.105-108
    • /
    • 1987
  • In this paper, a new algorithm is proposed to obtain important corner and real corner points of the simple objects and the visual robot graphics simulation using the results is studied. This is capable of performing as a debugging tool for task programming of a visual robot. And the robot motion is also simulated on a CRT terminal.

  • PDF

Robot manipulator Visual servoing system (영상추적 로봇 암 시스템)

  • Jeong, Yun-Yong;Choi, Seung-Jin;Hyun, Woong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1771-1772
    • /
    • 2007
  • The purpose of this project is to develop the visual servoing system with 5d.o.f robot manipulator. For this, we developed robot manipulator by using 5 serial RC motors and the visual system is also developed by using low cost USB CCD camera. RISC MPU ATMEGA128 is main controller MPU for the robot manipulator. To control the manipulator Kinematics was analyzed and GUI, API for vision system also were developed.

  • PDF

A development of remote measurement robot with vision system (원격 화상 계측 로봇 개발)

  • 양광용;최현석;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.375-379
    • /
    • 2001
  • This paper describes a development of remote measurement robot with vision system. The developed robot consists of robot controller and host PC program. The robot and camera can move with 2 degree of freedom by independent remote controlling a user friendly designe joystick. A visual image and command data translated through 900MHz and 447MHz RF controller, respectively. To show the validity of the developed system, operations of the robot in the field area were illustrated.

  • PDF

A development of remote controlled mobile robot working in a hazard environment (위해환경에서 구동가능한 원격제어 이동 로봇 개발)

  • 박제용;최현석;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.457-461
    • /
    • 2002
  • This paper describes a development of a robot working in hazard environment. The developed robot consists of robot controller with vision system and host PC program. The robot and camera can move with 2 degree of freedom by independent remote controlling a user friendly designed joystick. An environment is recognized by the vision system and ultra sonic sensors. The visual image and command data translated through 900MHz and 447MHz RF controller, respectively. To show the validity of the developed system, operations of the robot in the field area were illustrated.

  • PDF

An OS Platform Independent Architecture of Web-based Teleoperation for mobile robot

  • Ko, Deok-Hyeon;Lee, Soon-Geul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.346-349
    • /
    • 2004
  • The teleoperation system applies all of the industrial fields due to the development of the network infrastructure. It is one of the indispensable elements for controlling the robot at a remote sight and monitoring the limit or unknown environment. The common teleoperation robot system is what has the visual module to supply the network system and realistic UI to the existed robot system. Therefore, remarked that the fusion between modules and transmission of visual data the remarked the important element to improve the robot application in the various environments. Delay of development time by robot platform and noneffective communication among developers are also problem to approach. In this paper we propose the independent teleoperation system. The main application language is JAVA in this system, which is applied JAVA API like JNI and JMF to construct the effective teleoperation system. The system has the both side communication system between sever and client as a basic structure. The visual data that is attached the robot at a remote sight is captured by JMF API and then is transmitted to the web browser called client by RTR protocol. JNI is used to connect between JAVA and the lower part application (sensor fusion, motion control.) of the robot programmed by various Native languages. The proposed system is the application that can perform the elements, for instance transmission of visual data, the fusion of various native application modules and the effective network communication, with any platform.

  • PDF

Design of a Visual Servoing System of an Autonomous Mobile Robot using Fuzzy Logic System (자율이동로봇의 목표물 추적을 위한 시각구동장치의 설계 및 제어)

  • Song Un-Ji;Choi Byung-Jae;Yoo Seog-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.454-459
    • /
    • 2006
  • The research and development for autonomous mobile robots has widely been reported. This paper describes a fuzzy logic based visual servoing system for an autonomous mobile robot. An existing system always needs to keep a moving object in overall image. This makes difficult to move the autonomous mobile robot spontaneously. In this paper we first explain an autonomous mobile robot and fuzzy logic system. And then we design a fuzzy logic based visual servoing system. We extract some features of the object from an overall image and then design a fuzzy logic system for controlling the visual servoing system to an exact position. We here introduce a shooting robot that can track an object and hit it. We show that the proposed system presents a desirable performance by a computer simulation and some experiments.

On Design of Visual Servoing using an Uncalibrated Camera in 3D Space

  • Morita, Masahiko;Kenji, Kohiyama;Shigeru, Uchikado;Lili, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1121-1125
    • /
    • 2003
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF