• Title/Summary/Keyword: visual flight

Search Result 81, Processing Time 0.025 seconds

Legal Issues Regarding the Civil Injunction Against the Drone Flight (토지 상공에서의 드론의 비행자유에 대한 제한과 법률적 쟁점)

  • Shin, Hong-Kyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.2
    • /
    • pp.75-111
    • /
    • 2020
  • The civilian drone world has evolved in recent years from one dominated by hobbyists to growing involvement by companies seeking to profit from unmanned flight in everything from infrastructure inspections to drone deliveries that are already subject to regulations. Drone flight under the property right relation with the land owner would be deemed legal on the condition that expeditious and innocent passage of drone flight over the land be assured. The United Nations Convention on the Law of the Sea (UNCLOS) enshrines the concept of innocent passage through a coastal state's territorial sea. Passage is innocent so long as it is not prejudicial to the peace, good order or security of the coastal state. A vessel in innocent passage may traverse the coastal state's territorial sea continuously and expeditiously, not stopping or anchoring except in force majeure situations. However, the disturbances caused by drone flight may be removed, which is defined as infringement against the constitutional interest of personal rights. For example, aggressive infringement against privacy and personal freedom may be committed by drone more easily than ever before, and than other means. The cost-benefit analysis, however, has been recognjzed as effective criteria regarding the removal of disturbances or injunction decision. Applying that analysis, the civil action against such infringement may not find suitable basis for making a good case. Because the removal of such infringement through civil actions may result in only the deletion of journal article. The injunction of drone flight before taking the information would not be obtainable through civil action, Therefore, more detailed and meticulous regulation and criteria in public law domain may be preferable than civil action, at present time. It may be suitable for legal stability and drone industry to set up the detailed public regulations restricting the free flight of drone capable of acquiring visual information amounting to the infrigement against the right of personal information security.

A Study on Aptitude for Helicopter Pilots through the Job Analysis (직무분석을 통한 회전익 항공기 조종사 적성에 관한 연구)

  • Yu, T.J.;Kim, C.Y.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • The operational environment of helicopters extends from the civil air traffic control system to remote and hazardous areas and from day operations under visual flight conditions to night operations in adverse weather. Helicopters can move in any direction, remain stationary while airborne, climb and descend vertically, and take off and land almost anywhere. Thus their range of maneuvers and control requirements vary more widely than do those of fixed-wing aircraft. In this study, I analyzed the job of helicopter pilot through methods of observation, and classified the required ability of them into the domain of cognitive, perceptual/spatial, psychomotor. I expect that the result of this study will be used to aid training and selection of helicopter pilot.

  • PDF

Intruder Tracking and Collision Avoidance Algorithm Design for Unmanned Aerial Vehicles using a Model-based Design Method (모델 기반 설계 기법을 이용한 무인항공기의 침입기 추적 및 충돌회피 알고리즘 설계)

  • Choi, Hyunjin;Yoo, Chang-Sun;Ryu, Hyeok;Kim, Sungwook;Ahn, Seokmin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.83-90
    • /
    • 2017
  • Unmanned Aerial Vehicles(UAVs) require collision avoidance capabilities equivalent to the capabilities of manned aircraft to enter the airspace of manned aircraft. In the case of Visual Flight Rules of manned aircraft, collision avoidance is performed by 'See-and-Avoid' of pilots. To obtain those capabilities of UAVs named as 'Sense-and-Avoid', sensor-system-based intruder tracking and collision avoidance methods are required. In this study, a multi-sensor-based tracking, data fusion, and collision avoidance algorithm is designed by using a model-based design tool MATLAB/SIMULINK, and validations of the designed model and code using numerical simulations and processor-in-the-loop simulations are performed.

Physiological Effects of the VDU & HMD in Virtual Environments (가상환경에서 VDU와 HMD에 대한 생리학적 영향에 관한 연구)

  • Lee, Chang-Min;Park, Shi-Hyun
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.149-155
    • /
    • 2003
  • The focus of this study is to investigate how personal display systems - a VDU (Visual Display Unit) and an HMD (Head Mounted Display) physiologically affect the body in virtual environments, and to evaluate differential effects of using the VDU and the HMD on physiological responses to mental stressful tasks (virtual reality flight simulation). As physiological variables, autonomic measures (heart rate, blood pressure), immune cells (leukocyte, neutrophil, lymphocyte), and hormones (catecholamine) were measured before and after experiments. Physiological data were measured in order to compare a level of mental stress on the VDU and the HMD. Increments in blood pressure (systolic (p<0.05), diastolic (p<0.1)), norepinephrin (catecholamine) (p<0.005), and neutrophils (p<0.2) of the group using the HMD showed a significant difference with the group using the VDU. Although, the heart rate was not statistically significant between two environments, differences of them quietly increased on the HMD more than on the VDU.

Visualization Study of Dragonfly Type Wing : Reduced Frequency (잠자리 유형 날개의 가시화 연구 : 무차원 진동수)

  • Kim Song Hak;Chang Jo Won
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.14-17
    • /
    • 2004
  • A purpose of this visual experiment is to investigate the effect of reduced frequency qualitatively by examining wake pattern change for insect flying motion. Insect is composed of two pair wing with forewing and hindwing, flying motion of insect is performed pitching and plunging so it makes a separation over the wings. The separation affects at the wake pattern and changed wake pattern has an influence on lift, drag and propulsion. This experiment is conducted by using a smoke wire technique and a camera is fixed at hindwing to take a photograph of wake. An electronic device is mounted below test section to find exact the mean positional angle of wing. The reduced frequency in experiment is 0.15, 0.3 and 0.45. We obtained the result which that reduced frequency is closely related to wake pattern that determines flight efficiency.

  • PDF

Certification of Structure Damage from Direct Lightning (항공기 집접낙뢰에 대한 동체 구조손상 인증)

  • Lee, Haesun
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.3
    • /
    • pp.13-18
    • /
    • 2012
  • Every 3000 hour an aircraft is stricken by a lightning. Also the lightning damage to the aircraft during flight are continually occurred due to extreme weather phenomena such as global warming. Under the airworthiness standards, the aircraft must be designed to protect lightning. To show compliance for lightning, the test should be conducted by the actual lightning current and voltage waveform for the actual aircraft or parts. After test, structure damage is detected via visual inspection or NDI. Structure substantiation for damage is to show retaining limit or near limit load capability. This is conducted by test or analysis based on test. Thus, the aircraft should retain structural strength to land safely, even though the damage of aircraft fuselage from Lightning strike are occurred.

A Privacy-protection Device Using a Directional Backlight and Facial Recognition

  • Lee, Hyeontaek;Kim, Hyunsoo;Choi, Hee-Jin
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.421-427
    • /
    • 2020
  • A novel privacy-protection device to prevent visual hacking is realized by using a directional backlight and facial recognition. The proposed method is able to overcome the limitations of previous privacy-protection methods that simply restrict the viewing angle to a narrow range. The accuracy of user tracking is accomplished by the combination of a time-of-flight sensor and facial recognition with no restriction of detection range. In addition, an experimental demonstration is provided to verify the proposed scheme.

A Survey of Research on Human-Vehicle Interaction in Defense Area (국방 분야의 인간-차량 인터랙션 연구)

  • Yang, Ji Hyun;Lee, Sang Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.3
    • /
    • pp.155-166
    • /
    • 2013
  • We present recent human-vehicle interaction (HVI) research conducted in the area of defense and military application. Research topics discussed in this paper include: training simulation for overland navigation tasks; expertise effects in overland navigation performance and scan patterns; pilot's perception and confidence on an overland navigation task; effects of UAV (Unmanned Aerial Vehicle) supervisory control on F-18 formation flight performance in a simulator environment; autonomy balancing in a manned-unmanned teaming (MUT) swarm attack, enabling visual detection of IED (Improvised Explosive Device) indicators through Perceptual Learning Assessment and Training; usability test on DaViTo (Data Visualization Tool); and modeling peripheral vision for moving target search and detection. Diverse and leading HVI study in the defense domain suggests future research direction in other HVI emerging areas such as automotive industry and aviation domain.

Distributed and Real-time Integrated Simulation System on Avionics

  • Zhou, Yaoming;Liu, Yaolong;Li, Shaowei;Jia, Yuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.574-578
    • /
    • 2017
  • In order to achieve iterative design in early R&D period, a Distributed and Real-time Integrated Simulation System for avionics based on a Model-Based Systems Engineering (MBSE) method is proposed. The proposed simulation system includes driver, simulation model, monitor, flight visual model and aircraft external model.The effect of this simulation system in iterative design and system verification is testified by several use cases. The result shows that the simulation system, which can play an important role in iterative design and system verification, can reduce project costs and shorten the entire R&D period.

Photogrammetry-based reverse engineering method for aircraft airfoils prediction

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.331-344
    • /
    • 2021
  • Airframe internal and external specifications are the product of intensive intellectual efforts and technological breakthroughs distinguishing each aircraft manufacturer. Therefore, geometrical information characterizing aircraft primary aerodynamic surfaces remain classified. When attempting to model real aircraft, many members of the aeronautical community depend on their personal expertise and generic design principles to bypass the confidentiality obstacles and sketch real aircraft airfoils, which therefore vary for the same aircraft due to the different designers' initial assumptions. This paper presents a photogrammetric shape prediction method for deriving geometrical properties of real aircraft airframe by utilizing their publicly accessible static and dynamic visual content. The method is based on extracting the visually distinguishable curves at the fairing regions between aerodynamic surfaces and fuselage. Two case studies on B-29 and B-737 are presented showing how to approximate the sectional coordinates of their wing inboard airfoils and proving the good agreement between the geometrical and aerodynamic properties of the replicated airfoils to their original versions. Therefore, the paper provides a systematic reverse engineering approach that will enhance aircraft conceptual design and flight performance optimization studies.