• Title/Summary/Keyword: viscosity increase

Search Result 1,120, Processing Time 0.026 seconds

Dielectric loss of silicone oils for insulation due to the increase of viscosity (점도증가에 따른 절연용 실리콘유의 유전손실)

  • 이용우;조경순;김왕곤;홍진웅
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.587-593
    • /
    • 1995
  • Silicone oils used insulating substances exhibit the both of organic and inorganic properties, and it has many superior characteristics such as the high thermal resistance and low thermal oxidation level when compared to other insulation oils. In order to investigate the dielectric loss due to the increase of viscosity, silicone oils of viscosity 1, 2, 5[cSt] had been chosen as the specimen and experiment has been performed in the temperature range of -70[.deg. C] - 65[.deg. C] and frequency range of 30 - 1*10$\^$5/[Hz]. As a result, the linear decrease of loss at low frequency region in high temperature was due to the influence of applying frequency, whereas the increase of loss at high frequency region was contributed by electrode's resistance. And increasing viscosity, the activation energy increased from 3.77[kcal/mole] to 7.21[kcal/mole]. The dipole moment of specimen was become clear 1.48 - 2.26[debyel in high temperature region(5 - 65[.deg. C]) and 1.05 - 1.80[debye] in low temperature region (-70 - -25[.deg. C])respectively.

  • PDF

Relative Viscosity of Emulsions in Simple Shear Flow: Temperature, Shear Rate, and Interfacial Tension Dependence (전단유동에서 온도, 전단속도, 계면장력 변화에 따른 에멀전의 유변학적 특성)

  • Choi, Se Bin;Lee, Joon Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.677-682
    • /
    • 2015
  • We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

Changes in Flexural Strength and Electrical Resistivity of Bulk Graphite According to the Viscosity of Impregnant (함침재의 점도에 따른 벌크흑연의 굽힘강도 및 전기비저항 변화)

  • Lee, Sang-Min;Lee, Sang-Hye;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.108-114
    • /
    • 2021
  • In the manufacturing of bulk graphite, pores produced by vaporization and discharge of volatile materials in binders during carbonization reduce the density of bulk graphite, which adversely affects the electrical conductivity, strength and mechanical properties. Therefore, an impregnation process is introduced to fill the pores and increase the density of bulk graphite. In this study, bulk graphite is prepared by varying the viscosity of the impregnant. The microstructure of bulk graphite is observed. The flexural strength and electrical resistivity are measured. As the viscosity of the impregnants decreases and the number of impregnations increases, it is shown that the number of pores decreases. The density before impregnation is 1.62 g/㎤. The density increases to 1.67 g/㎤ and porosity decreases by 18.6 % after three impregnations using 5.1 cP impregnant, resulting in the best pore-filling effect. After three times of impregnation with a viscosity of 5.1 cP, the flexural strength increases by 55.2 % and the electrical resistivity decreases by 86.76 %. This shows that a slight increase in density due to the pore-filling effect improves the properties of bulk graphite.

Effect of Heating Conditions on Apparent Viscosity of Cowpea Sediment Dispersions (가열조건에 따른 동부 앙금 호화액의 겉보기 점도)

  • 이애랑;김성곤
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.5
    • /
    • pp.822-826
    • /
    • 1994
  • Effects of concentration(6-9%, db) , heating temperature (80-95$^{\circ}C$), cooking time (10-50min) and heating method (continuous and instantaneous) on the apparent viscosity of cowpea sediment dispersions at 6$0^{\circ}C$ were investigated. The instantaneous heating resulted in higher apparent viscosity than continuous heating regardless concentrations and heating temperatures. The activation energy of the increase rate constant of the apparent viscosity was about 8 kcal/mole. The apparent viscosity of the cowpea sediment dispersion heated to 95$^{\circ}C$ and held for 20 min showed a linear relation with the 20 min height at 92.5$^{\circ}C$ by viscoamylograph.

  • PDF

Flow behavior of high internal phase emulsions and preparation to microcellular foam

  • Lee, Seong Jae
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.153-160
    • /
    • 2004
  • Open microcellular foams having small-sized cell and good mechanical properties are desirable for many practical applications. As an effort to reduce the cell size, the microcellular foams combining viscosity improvers into the conventional formulation of styrene and water system were prepared via high internal phase emulsion polymerization. Since the material properties of foam are closely related to the solution properties of emulsion state before polymerization, the flow behavior of emulsions was investigated using a controlled stress rheometer. The yield stress and the storage modulus increased as viscosity improver concentration and agitation speed increased, due to the reduced cell size reflecting both a competition between the continuous phase viscosity and the viscosity ratio and an increase of shear force. Appreciable tendency was found between the rheological data of emulsions and the cell sizes of polymerized foams. Cell size reduction with the concentration of viscosity improver could be explained by the relation between capillary number and viscosity ratio. A correlative study for the cell size reduction with agitation speed was also attempted and the result was in a good accordance with the hydrodynamic theory.

A Study on Improving Fluidity of Cement Paste (시멘트 페이스트의 유동성 개선방안 연구)

  • Han, Dongyeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.171-172
    • /
    • 2017
  • In order to meet the high performance of the concrete, the viscosity increases with water binder ratio and amount of powder. because of these problems, we use high performance water reducing agent and low viscosity water reducing agent, but side effects may occur when using large amount of water reducing agent. Therefore, in this research, in order to increase the viscosity, I would like to analyze the change in viscosity and flow characteristics of paste by utilizing fly ash and lung limestone which are generally thrown away without using high performance water reducing agent.

  • PDF

Effect of liquid viscosity on the degree of uniformity of drops from swirl spray nozzles (와류 분무 노즐에 의해 형성되는 액적들의 균일도에 액체의 점도가 미치는 영향)

  • 이상용;김인구;조한권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.538-546
    • /
    • 1989
  • Effect of liquid viscosity was studied experimentally on the drop size distributions of the liquid sprays from swirl atomizers. Glycerine-Water mixtures were used as test fluids for the experiments. Drop sizes of the liquid sprays were measured with the light scattering method. The concept of the standard deviation was introduced to represent the degree of uniformity of the drop size distributions. Experimental results show that the spray drops become coarser and less uniform with the liquid of higher viscosity. The effect of viscosity on the Sauter mean diameter and the standard deviation appeared to be more significant with the lower injection pressure. It was also confirmed that the Sauter mean diameter increases with the increase of the liquid viscosity and with the decrease of the injection pressure.

The Effect of Starter Culture on Viscosity of Stirred Yogurt (호상 요구르트의 점도에 미치는 균주의 영향)

  • Jeong, Tae-Hui;Kim, Nam-Cheol;Park, Heung-Sik;Gwak, Hae-Su
    • Journal of Dairy Science and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.65-73
    • /
    • 2006
  • This study was to review recent reports in effects of various starter cultures on the viscosity in stirred yogurt. The rheological properties of yogurt have received considerable attention in the literature. Most yogurts are typically made by mixed cultures of Lactobacillus bulgaricus and Streptococcus thermophilus. The viscosity of yogurt made by mixed cultures was much higher than that of yogurt by single cultures. Since texture of stirred yogurt is the result of both acid aggregation of casein micelles and production of exopoly-saccharides, it is suggested that yogurt be made by the exopolysaccharide-producing cultures in order to increase viscosity, Both types of exopolysaccharides are capsule and loose slime(ropy). But it is desirable to use encapsulated nonropy strains. And Bifidobacteria affects adversely to the viscosity of yogurt. Therefore, starter cultures which have an effect on yogurt viscosity have been widely demonstrated. This review is the search for the development of viscosity in stirred yogurt.

  • PDF

Rheological and Pasting Properties of Potato Flour Dispersions (감자가루 분산액의 유변학적 및 페이스팅 특성 분석)

  • Heo, Hyemi;Won, Chuin;Jin, Yong-Ik;Chang, Dong-Chil;Kim, Misook;Lee, Youngseung;Chang, Yoon Hyuk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.9
    • /
    • pp.1407-1413
    • /
    • 2015
  • The objective of this study was to investigate the rheological and pasting properties of potato flour dispersions at different concentrations (3, 4, 5, 6, and 7%, w/w). A potato cultivar 'Goun', used in this study, was developed by Highland Agriculture Research Center, RDA. Potato flour dispersions showed shear-thinning behaviors (n=0.44~0.51) at $25^{\circ}C$. Apparent viscosity (${\eta}_{a,100}$), consistency index (K), and yield stress (${\sigma}_{oc}$) significantly increased with an increase in potato flour concentration. Storage modulus (G') and loss modulus (G") significantly increased, whereas complex viscosity (${\eta}^*$) was significantly reduced with increasing frequency (${\omega}$) from 0.63 to 63.8 rad/s. Magnitudes of G' and G" were significantly increased with elevation of potato flour concentration. G' values were considerably greater than G" over the entire range of frequency (${\omega}$) with a high dependence on ${\omega}$. Cox-Merz rule was not applicable to potato flour dispersions. Rapid Visco Analyzer data showed that peak viscosity, trough viscosity, breakdown viscosity, final viscosity, and set back viscosity of samples significantly increased with an increase in potato flour concentration.

Characterization of Dental Resin Cement Containing Graphene Oxide

  • Kim, Duck-Hyun;Seok, Jae-Wuk;Sung, A-Young
    • Journal of Integrative Natural Science
    • /
    • v.12 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • In dental resin cement studies, viscosity is also an important factor in the adhesion of tooth defects and implants. This study used BisGMA and HPMA as the main ingredients, triethylene glycol dimethacrylate (TEGDMA) as a diluent, and benzoyl peroxide (BPO) as a photoinitiator. The physical properties of graphene oxide used as an additive for functionality were evaluated, and its use as a dental resin cement material was investigated.The rupture strength has the tendency to increase along with the increase of the ratio of graphene oxide that was added, which seemed to reflect the effect of the high strength property of graphene oxide. The flexural strength also has the tendency to increase when about 0.5% of graphene oxide was added the same as the increase of rupture strength.When graphene oxide was added, according to viscosity use, the utilization as high-quality dental resin cements will increase.