• Title/Summary/Keyword: virulence reduction

Search Result 28, Processing Time 0.032 seconds

Variability in Virulence of Calonectria ilicicola Isolates on Soybean (콩에 대한 Calonectria ilicicola 균주의 병원성 변이)

  • ;J. s. Russin;J. P. Snow
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.571-577
    • /
    • 1998
  • Variability in virulence of Calonectria ilicicola isolates form different hosts and geographic origin provides important information for breeding cultivars resistant to red crown rot. A wide range in virulence for 25 isolates of C. ilicicola from soybean and peanut was observed on six soybean cultivars. Soybean isolates were pathogenic on soybean although some were less virulent. Virulence of isolates was not affected greatly by cultivar and relatively consistent regardless of virulence level. Soybean isolates were more virulent on soybean than were peanut isolates. When virulence of two soybean and tow peanut isolates was compared between laboratory and greenhouse tests, it was stable across a range of cultivars. Mycelial growth of isolates from either soybean or peanut was reduced significantly on potato dextrose chlorate showed significant reduction of fungal growth than isolates from peanut did although their growth on potato dextrose agar was not significantly different. Evidence for physiologic specialization was not recognized in this system. However, the findings that soybean isolates of C. ilicicola were more virulent on soybean and reduction of fungal growth on potato dextrose chlorate than were peanut isolates suggest that host specialization may exist in this fugus.

  • PDF

Virulence Reduction and Differing Regulation of Virulence Genes in rpf Mutants of Xanthomonas oryzae pv. oryzae

  • Jeong, Kyu-Sik;Lee, Seung-Eun;Han, Jong-Woo;Yang, Seung-Up;Lee, Byoung-Moo;Noh, Tae-Hwan;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • To define the functions of the rpf genes in Xanthomonas oryzae pv. oryzae (Xoo), which regulates pathogenicity factors in Xanthomonas campestris pv. campestris (Xcc), marker-exchange mutants of each rpf gene were generated. When the mutants were inoculated on a susceptible cultivar, the lesion lengths caused by the rpfB, rpfC, rpfF, and rpfG mutants were significantly smaller than those caused by the wild type, whereas those caused by the rpfA, rpfD, and rpfI mutants were not. Several virulence determinants, including extracellular polysaccharide (EPS) production, xylanase production, and motility, were significantly decreased in the four mutants. However, the cellulase activity in the mutants was unchanged. Complementation of the rpfB and rpfC mutations restored the virulence and the expression of the virulence determinants. Expression analysis of 14 virulence genes revealed that the expression of genes related to EPS production (gumG and gumM), LPS (xanA, xanB, wxoD, and wxoC), phytase (phyA), xylanase (xynB), lipase (lipA), and motility (pitA) were reduced significantly in the mutants rpfB, rpfC, rpfF, and rpfG. In contrast, the expression of genes related to cellulase (eglxob, clsA), cellobiosidase (cbsA), and iron metabolism (fur) was unchanged. The results of this study clearly show that rpfB, rpfC, rpfF, and rpfG are important for the virulence of Xoo KACC10859, and that virulence genes are regulated differently by the Rpfs.

Disruption of the Dual Specificity Kinase Gene Causes the Reduction of Virulence in Candida albicans (이중특이성 인산화 효소의 결손이 Candida albicans 병원성에 미치는 효과)

  • Park, Yun-Hee;Park, Hee-Moon
    • The Korean Journal of Mycology
    • /
    • v.39 no.1
    • /
    • pp.85-87
    • /
    • 2011
  • The opportunistic human pathogen Candida albicans has the ability to convert from yeast-form to pseudohyphal or true hyphal form. The morphological transition is considered as an important virulence factor, because the decrease or lack in dimorphism causes the reduction of virulence. Our previous study revealed that the disruption of dual specificity kinase gene caused the reduction of dimorphism in C. albicans. Therefore we tested the effect of dual specificity kinase in virulence using mouse model. The mean survival time for kinase-defective strains was about 15 days in comparison with those of wild-type, 3.9 days. Moreover the fungal burden on kidneys for kinase-defective strains was decreased by ten-fold than that for wild-type. These results suggest possible involvement of dual specificity kinase in a novel signal transduction pathway for morphological transition and virulence of C. albicans.

Contribution of the murI Gene Encoding Glutamate Racemase in the Motility and Virulence of Ralstonia solanacearum

  • Choi, Kihyuck;Son, Geun Ju;Ahmad, Shabir;Lee, Seung Yeup;Lee, Hyoung Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.355-363
    • /
    • 2020
  • Bacterial traits for virulence of Ralstonia solanacearum causing lethal wilt in plants were extensively studied but are not yet fully understood. Other than the known virulence factors of Ralstonia solanacearum, this study aimed to identify the novel gene(s) contributing to bacterial virulence of R. solanacearum. Among the transposon-inserted mutants that were previously generated, we selected mutant SL341F12 strain produced exopolysaccharide equivalent to wild type strain but showed reduced virulence compared to wild type. In this mutant, a transposon was found to disrupt the murI gene encoding glutamate racemase which converts L-glutamate to D-glutamate. SL341F12 lost its motility, and its virulence in the tomato plant was markedly diminished compared to that of the wild type. The altered phenotypes of SL341F12 were restored by introducing a full-length murI gene. The expression of genes required for flagella assembly was significantly reduced in SL341F12 compared to that of the wild type or complemented strain, indicating that the loss of bacterial motility in the mutant was due to reduced flagella assembly. A dramatic reduction of the mutant population compared to its wild type was apparent in planta (i.e., root) than its wild type but not in soil and rhizosphere. This may contribute to the impaired virulence in the mutant strain. Accordingly, we concluded that murI in R. solanacearum may be involved in controlling flagella assembly and consequently, the mutation affects bacterial motility and virulence.

The Autophagy Protein CsATG8 is Involved in Asexual Development and Virulence in the Pepper Anthracnose Fungus Colletotrichum scovillei

  • Kwang Ho Lee;Adiyantara Gumilang;Teng Fu;Sung Wook Kang;Kyoung Su Kim
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.467-474
    • /
    • 2022
  • Autophagy serves as a survival mechanism and plays important role in nutrient recycling under conditions of starvation, nutrient storage, ad differentiation of plant pathogenic fungi. However, autophagy-related genes have not been investigated in Colletotrichum scovillei, a causal agent of pepper fruit anthracnose disease. ATG8 is involved in autophagosome formation and is considered a marker of autophagy. Therefore, we generated an ATG8 deletion mutant, ΔCsatg8, via homologous recombination to determine the functional roles of CsATG8 in the development and virulence of C. scovillei. Compared with the wild-type, the deletion mutant ΔCsatg8 exhibited a severe reduction in conidiation. Conidia produced by ΔCsatg8 were defective in survival, conidial germination, and appressorium formation. Moreover, conidia of ΔCsatg8 showed reduced lipid amount and PTS1 selectivity. A virulence assay showed that anthracnose development on pepper fruits was reduced in ΔCsatg8. Taken together, our results suggest that CsATG8 plays various roles in conidium production and associated development, and virulence in C. scovillei.

The Developmental Regulators, FlbB and FlbE, are Involved in the Virulence of Aspergillus fumigatus

  • Kim, Sung-Su;Kim, Young Hwan;Shin, Kwang-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.766-770
    • /
    • 2013
  • Several upstream activators required for proper activation of brlA are involved in the development, vegetative growth, toxin production, and pathogenesis of Aspergillus fumigatus. In this study, we characterized the roles of two upstream developmental regulators, A. fumigatus flbB (AfuflbB) and flbE (AfuflbE), in toxin production and virulence. The deletion of AfuflbB and AfuflbE resulted in reduction of the expression of AfulaeA. Moreover, only about 8% to 10% of fumagillin was produced in the two mutants compared with that of wild type, and ${\Delta}AfuflbB$ strain produced 85% of gliotoxin compared with wild type, whereas none was produced by ${\Delta}AfuflbB$. Flow-cytometric analysis revealed decreased necrotic and apoptotic polymorphonuclear leukocytes cell death after exposure to supernatants from ${\Delta}AfuflbB$ and ${\Delta}AfuflbB$ strains compared with the wild type. These results indicate that FlbB and FlbE are necessary for the proper laeA expression, toxin production, and virulence of A. fumigatus.

Virulence Factors and Stability of Coliphages Specific to Escherichia coli O157:H7 and to Various E. coli Infection

  • Kim, Eun-Jin;Chang, Hyun-Joo;Kwak, Soojin;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2060-2065
    • /
    • 2016
  • Characteristics of E. coli O157:H7-specific infection bacteriophages (O157 coliphages) and broad-host-range bacteriophages for other E. coli serotypes (broad-host coliphages) were compared. The burst sizes of the two groups ranged from 40 to 176 PFU/infected cell. Distributions of the virulence factors stx1, stx2, ehxA, and saa between the two groups were not differentiated. Broad-host-range coliphages showed lower stability at $70^{\circ}C$, in relation to O157 coliphages. However, O157 coliphages showed high acid and ethanol tolerance by reduction of only 22% and 11% phages, respectively, under pH 3 and 70% ethanol for 1 h exposure. Therefore, these results revealed that the O157 coliphages might be more stable under harsh environments, which might explain their effective infection of the acid-tolerant E. coli O157:H7.

Isorhamnetin Attenuates Staphylococcus aureus-Induced Lung Cell Injury by Inhibiting Alpha-Hemolysin Expression

  • Jiang, Lanxiang;Li, Hongen;Wang, Laiying;Song, Zexin;Shi, Lei;Li, Wenhua;Deng, Xuming;Wang, Jianfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.596-602
    • /
    • 2016
  • Staphylococcus aureus, like other gram-positive pathogens, has evolved a large repertoire of virulence factors as a powerful weapon to subvert the host immune system, among which alpha-hemolysin (Hla), a secreted pore-forming cytotoxin, plays a preeminent role. We observed a concentration-dependent reduction in Hla production by S. aureus in the presence of sub-inhibitory concentrations of isorhamnetin, a flavonoid from the fruits of Hippophae rhamnoides L., which has little antibacterial activity. We further evaluate the effect of isorhamnetin on the transcription of the Hla-encoding gene hla and RNAIII, an effector molecule in the agr system. Isorhamnetin significantly down-regulated RNAIII expression and subsequently inhibited hla transcription. In a co-culture of S. aureus and lung cells, topical isorhamnetin treatment protected against S. aureus-induced cell injury. Isorhamnetin may represent a leading compound for the development of anti-virulence drugs against S. aureus infections.

Roles of Glutathione Reductase and $\gamma$-Glutamylcysteine Synthetase in Candida albicans

  • Baek, Yong-Un;Yim, Hyung-Soon;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.61-61
    • /
    • 2003
  • We have cloned the CGR1 gene encoding glutathione reductase (GR) which catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) from Candida albicans. The cgr1/cgr1 mutants were not viable when CaMAL2 promoter repressed the CGR1 expression. The growth of the mutants could be partially overcome by thiol compounds such as GSH, dithiothreitol, cysteine, N-acetylcysteine and GSSG. Interestingly, C. albicans with CGR1 overexpressed showed defective hyphal growth on solid medium and attenuated virulence. We have also cloned the GCS1 gene encoding ${\gamma}$-glutamylcysteine synthetase which catalyzes the first step of glutathione biosynthesis. The gcs1/gcs1 mutants were nonviable in minimal defined medium. The growth of the mutants could be resumed by supplementing with GSH, GSSG and ${\gamma}$-glutamylcysteine in the medium. The mutants had increased intracellular D-erythroascorbic acid level up to 2.25-fold when transferred to GSH-free medium. When the mutants were depleted of GSH, they showed typical markers of apoptosis. In conclusion, these results suggest that glutathione is an essential metabolite, and involved in hyphal growth, virulence and apoptosis in C. albicans.

  • PDF

Growth, Morphology, Cross Stress Resistance and Antibiotic Susceptibility of K. pneumoniae Under Simulated Microgravity

  • Kalpana, Duraisamy;Cha, Hyo-Jung;Park, Moon-Ki;Lee, Yang-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.267-276
    • /
    • 2012
  • Spaceflights results in the reduction of immune status of human beings and increase in the virulence of microorganisms, especially gram negative bacteria. The growth of Klebsiella pneumoniae is enhanced by catecholamines and during spaceflight, elevation in the levels of cortisols occurs. So it is necessary to know the changes in physiology, virulence, antibiotic resistance and gene expression of K. pneumoniae under microgravity conditions. The present study was undertaken to study effect of simulated microgravity on growth, morphology, antibiotic resistance and cross stress resistance of K. pneumoniae to various stresses. The susceptibility of simulated microgravity grown K. pneumoniae to ampicillin, penicillin, streptomycin, kanamycin, hygromycin and rifampicin were evaluated. The growth of bacteria was found to be fast compared with normal gravity grown bacteria and no significant changes in the antibiotic resistance were found. The bacteria cultured under microgravity conferred cross stress resistance to acid, temperature and osmotic stress higher than the normal gravity cultured bacteria but the vice versa was found in case of oxidative stress.