DOI QR코드

DOI QR Code

Contribution of the murI Gene Encoding Glutamate Racemase in the Motility and Virulence of Ralstonia solanacearum

  • Choi, Kihyuck (Department of Applied Bioscience, Dong-A University) ;
  • Son, Geun Ju (Department of Applied Bioscience, Dong-A University) ;
  • Ahmad, Shabir (Department of Microbiology and Biotechnology, Sarhad University of Science and Information Technology) ;
  • Lee, Seung Yeup (Department of Applied Bioscience, Dong-A University) ;
  • Lee, Hyoung Ju (Department of Applied Bioscience, Dong-A University) ;
  • Lee, Seon-Woo (Department of Applied Bioscience, Dong-A University)
  • Received : 2020.03.04
  • Accepted : 2020.05.26
  • Published : 2020.08.01

Abstract

Bacterial traits for virulence of Ralstonia solanacearum causing lethal wilt in plants were extensively studied but are not yet fully understood. Other than the known virulence factors of Ralstonia solanacearum, this study aimed to identify the novel gene(s) contributing to bacterial virulence of R. solanacearum. Among the transposon-inserted mutants that were previously generated, we selected mutant SL341F12 strain produced exopolysaccharide equivalent to wild type strain but showed reduced virulence compared to wild type. In this mutant, a transposon was found to disrupt the murI gene encoding glutamate racemase which converts L-glutamate to D-glutamate. SL341F12 lost its motility, and its virulence in the tomato plant was markedly diminished compared to that of the wild type. The altered phenotypes of SL341F12 were restored by introducing a full-length murI gene. The expression of genes required for flagella assembly was significantly reduced in SL341F12 compared to that of the wild type or complemented strain, indicating that the loss of bacterial motility in the mutant was due to reduced flagella assembly. A dramatic reduction of the mutant population compared to its wild type was apparent in planta (i.e., root) than its wild type but not in soil and rhizosphere. This may contribute to the impaired virulence in the mutant strain. Accordingly, we concluded that murI in R. solanacearum may be involved in controlling flagella assembly and consequently, the mutation affects bacterial motility and virulence.

Keywords

References

  1. Bayot, R. G. and Ries, S. M. 1986. Role of motility in apple blossom infection by Erwinia amylovora and studies of fire blight control with attractant and repellent compounds. Phytopathology 76:441-445. https://doi.org/10.1094/Phyto-76-441
  2. Boucher, C. A., Barberis, P. A., Trigalet, A. and Demery, D. A. 1985. Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5- induced avirulent mutants. J. Gen. Microbiol. 131:2449-2457.
  3. Boyer, H. W. and Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41:459-472. https://doi.org/10.1016/0022-2836(69)90288-5
  4. Chen, Y.-Y., Wu, C.-H., Lin, J.-W., Weng, S.-F. and Tseng, Y.-H. 2010. Mutation of the gene encoding a major outermembrane protein in Xanthomonas campestris pv. campestris causes pleiotropic effects, including loss of pathogenicity. Microbiology 156:2842-2854. https://doi.org/10.1099/mic.0.039420-0
  5. Chuaboon, W., Athinuwat, D., Kaewnum, S., Burr, T. J. and Prathuangwong, S. 2014. Genes associated with production of flagella and a pectate lyase affect virulence and associated activities in Xanthomonas axonopodis pv. glycines. Thai J. Agric. Sci. 47:115-132.
  6. Denny, T. P. and Baek, S.-R. 1991. Genetic evidence that extracellular polysaccharide is a virulence factor Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 4:198-206. https://doi.org/10.1094/MPMI-4-198
  7. Ding, L., Wang, Y., Hu, Y., Atkinson, S., Williams, P. and Chen, S. 2009. Functional characterization of FlgM in the regulation of flagellar synthesis and motility in Yersinia pseudotuberculosis. Microbiology 155:1890-1900. https://doi.org/10.1099/mic.0.026294-0
  8. Doublet, P., van Heijenoort, J., Bohin, J. P. and Mengin-Lecreulx, D. 1993. The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity. J. Bacteriol. 175:2970-2979. https://doi.org/10.1128/JB.175.10.2970-2979.1993
  9. Doublet, P., van Heijenoort, J. and Mengin-Lecreulx, D. 1992. Identification of the Escherichia coli murI gene, which is required for the biosynthesis of D-glutamic acid, a specific component of bacterial peptidoglycan. J. Bacteriol. 174:5772-5779. https://doi.org/10.1128/JB.174.18.5772-5779.1992
  10. Elphinstone, J. G., Hennessy, J., Wilson, J. K. and Stead, D. 1996. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bull. 26:663-678. https://doi.org/10.1111/j.1365-2338.1996.tb01511.x
  11. Falkow, S. 2004. Molecular Koch's postulates applied to bacterial pathogenicity--a personal recollection 15 years later. Nat. Rev. Microbiol. 2:67-72. https://doi.org/10.1038/nrmicro799
  12. Gatt, R. and Berman, E. R. 1966. A rapid procedure for the estimation of amino sugars on a micro scale. Anal. Biochem. 15:167-171. https://doi.org/10.1016/0003-2697(66)90262-4
  13. Gonzalez, E. T., Brown, D. G., Swanson, J. K. and Allen, C. 2007. Using the Ralstonia solanacearum Tat secretome to identify bacterial wilt virulence factors. Appl. Environ. Microbiol. 73:3779-3786. https://doi.org/10.1128/AEM.02999-06
  14. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
  15. Hikichi, Y., Wali, U. M., Ohnishi, K. and Kiba, A. 2013. Mechanism of disease development caused by a multihost plant bacterium, Pseudomonas cichorii, and its virulence diversity. J. Gen. Plant Pathol. 79:379-389. https://doi.org/10.1007/s10327-013-0461-7
  16. Jacobs, J. M., Pesce, C., Lefeuvre, P. and Koebnik, R. 2015. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas. Front. Plant Sci. 6:431. https://doi.org/10.3389/fpls.2015.00431
  17. Jeong, Y., Kim, J., Kang, Y., Lee, S. and Hwang, I. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91:1277-1287. https://doi.org/10.1094/PDIS-91-10-1277
  18. Kada, S., Nanamiya, H., Kawamura, F. and Horinouchi, S. 2004. Glr, a glutamate racemase, supplies D-glutamate to both peptidoglycan synthesis and poly-gamma-glutamate production in gamma-PGA-producing Bacillus subtilis. FEMS Microbiol. Lett. 236:13-20. https://doi.org/10.1111/j.1574-6968.2004.tb09621.x
  19. Kang, Y., Liu, H., Genin, S., Schell, M. A. and Denny, T. P. 2002. Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol. Microbiol. 46:427-437. https://doi.org/10.1046/j.1365-2958.2002.03187.x
  20. Kimura, K., Tran, L.-S. P. and Itoh, Y. 2004. Roles and regulation of the glutamate racemase isogenes, racE and yrpC, in Bacillus subtilis. Microbiology 150:2911-2920. https://doi.org/10.1099/mic.0.27045-0
  21. Liu, H., Zhang, S., Schell, M. A. and Denny, T. P. 2005. Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Mol. Plant-Microbe Interact. 18:1296-1305. https://doi.org/10.1094/MPMI-18-1296
  22. Liu, L., Yoshimura, T., Endo, K., Esaki, N. and Soda, K. 1997. Cloning and expression of the glutamate racemase gene of Bacillus pumilus. J. Biochem. 121:1155-1161. https://doi.org/10.1093/oxfordjournals.jbchem.a021709
  23. Liu, L., Yoshimura, T., Endo, K., Kishimoto, K., Fuchikami, Y., Manning, J. M., Esaki, N. and Soda, K. 1998. Compensation for D-glutamate auxotrophy of Escherichia coli WM335 by D-amino acid aminotransferase gene and regulation of murI expression. Biosci. Biotechnol. Biochem. 62:193-195. https://doi.org/10.1271/bbb.62.193
  24. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
  25. Moens, S. and Vanderleyden, J. 1996. Functions of bacterial flagella. Crit. Rev. Microbiol. 22:67-100. https://doi.org/10.3109/10408419609106456
  26. Panopoulos, N. J. and Schroth, M. N. 1974. Role of flagellar motility in the invasion of bean leaves Pseudomonas phaseolicola. Phytopathology 64:1389-1397. https://doi.org/10.1094/Phyto-64-1389
  27. Pucci, M. J., Thanassi, J. A., Ho, H.-T., Falk, P. J. and Dougherty, T. J. 1995. Staphylococcus haemolyticus contains two Dglutamic acid biosynthetic activities, a glutamate racemase and a D-amino acid transaminase. J. Bacteriol. 177:336-342. https://doi.org/10.1128/JB.177.2.336-342.1995
  28. Taguchi, F., Yamamoto, M., Ohnishi-Kameyama, M., Iwaki, M., Yoshida, M., Ishii, T., Konishi, T. and Ichinose, Y. 2010. Defects in flagellin glycosylation affect the virulence of Pseudomonas syringae pv. tabaci 6605. Microbiology 156:72-80. https://doi.org/10.1099/mic.0.030700-0
  29. Tans-Kersten, J., Huang, H. and Allen, C. 2001. Ralstonia solanacearum needs motility for invasive virulence on tomato. J. Bacteriol. 183:3597-3605. https://doi.org/10.1128/JB.183.12.3597-3605.2001
  30. Toth, I. K., Thorpe, C. J., Bentley, S. D., Mulholland, V., Hyman, L. J., Perombelon, M. C. M. and Salmond, G. P. C. 1999. Mutation in a gene required for lipopolysaccharide and enterobacterial common antigen biosynthesis affects virulence in the plant pathogen Erwinia carotovora subsp. atroseptica. Mol. Plant-Microbe Interact. 12:499-507. https://doi.org/10.1094/MPMI.1999.12.6.499
  31. van Elsas, J. D., Kastelein, P., de Vries, P. M. and van Overbeek, L. S. 2001. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Can. J. Microbiol. 47:842-854. https://doi.org/10.1139/w01-084
  32. van Heijenoort, J. 2001. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18:503-519. https://doi.org/10.1039/a804532a
  33. Wallis, F. M. and Truter, S. J. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum, with emphasis on ultrastructure. Physiol. Plant Pathol. 13:307-317. https://doi.org/10.1016/0048-4059(78)90047-4
  34. Wu, J., Kong, H. G., Jung, E. J., Choi, S. Y., Lee, H. J., Tao, W., Chung, E. and Lee, S.-W. 2015. Loss of glutamate dehydrogenase in Ralstonia solanacearum alters dehydrogenase activity, extracellular polysaccharide production and bacterial virulence. Physiol. Mol. Plant. Pathol. 90:57-64. https://doi.org/10.1016/j.pmpp.2015.03.003
  35. Yanisch-Perron, C., Vieira, J. and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103-119. https://doi.org/10.1016/0378-1119(85)90120-9
  36. Zhang, J., Liu, J., Ling, J., Tong, Z., Fu, Y. and Liang, M. 2016. Inactivation of glutamate racemase (MurI) eliminates virulence in Streptococcus mutans. Microbiol. Res. 186:1-8. https://doi.org/10.1016/j.micres.2016.02.003
  37. Zheng, H., Mao, Y., Teng, J., Zhu, Q., Ling, J. and Zhong, Z. 2015. Flagellar-dependent motility in Mesorhizobium tianshanense is involved in the early stage of plant host interaction: study of an flgE mutant. Curr. Microbiol. 70:219-227. https://doi.org/10.1007/s00284-014-0701-x